THE INFLUENCE OF THE FOAMING AGENT ON THE MECHANICAL PROPERTIES OF THE PM HYDROXYAPATITE-BASED BIOCOMPOSITES PROCESSED BY TWO-STEPS SINTERING ROUTE

O. Gingu¹, D. Cojocaru², G. Sima³, C. Teisanu¹, I.G. Bucse¹, B.-A. Olei¹, M. Mangra¹

¹ University of Craiova, Faculty of Mechanics, 107 Calea Bucuresti, 200512, Craiova, Romania; oanagingu@yahoo.com
² University Politehnica of Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania

Keywords: biocomposites, two-steps sintering, foaming, mechanical properties

Abstract: As bone tissue engineering applications, the studied biocomposites are processed by the powder metallurgy (PM) route. The powder mixture is made of hydroxyapatite submicronic powders (< 200 nm) respectively micronic (30-50 μm) as matrix and TiH2 (100-150 μm; 15-25% wt) as reinforcement’s precursor as well as blowing agent. To increase the porosity by the space holder technique, CaCO3 powder is added (5-10% wt.) [1]. The homogenization step is performed in Pulverisette 6 ball mill (n = 200 rpm, time = 30 min.) followed by the cold compaction at 120-170 MPa. The green compacts are submitted to the two-steps sintering (TSS) route developed on the Nabertherm conventional furnace: 1st step at 900°C for few minutes and the 2nd step at 800°C for 450 minutes respectively 600 minutes. The efficiency of this sintering route is accompanied by the improvement of the mechanical properties of the processed biocomposites [2-4]. The hydrogen and CO2 releasing as foaming reagents along the 2nd step dwell time determine specific Ti, TiO2 and CaO content in the biocomposites’ structure. The microhardness is tested by the Vickers micro-indentation testing (HV) using a Wilso-Volpert 401MVA micro-hardness tester. Using the initial gradient of the unloading curves, the Instrumented Hardness (HIT) and Instrumented Elastic Modulus (EIT) will be estimated using the Oliver and Pharr model.

Selective references:

Acknowledgements: We hereby acknowledge the research project PNII-PT-PCCA-2013-4-2094, Research of the bone substitution with biocomposite materials processed by powder metallurgy specific techniques, acronym BONY, for the financial support.