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In this dissertation, author examines control algorithms for robots with elastic components. 

Two objects are concern is two-legged robot with elastic legs and elastic inverted pendulum. 

Their dynamic equations are generated and controllers are created to applied. 

Firstly, mathematical model of kinds of inverted pendulum are presented. Based on these 

dynamic equations and some real experimental model in laboratories, simulation and 

experimental results under different kinds of controllers through kinds of inverted pendulum 

are generated. Conventional, nonlinear and intelligent controllers are tested in both simulation 

and experiment. Mainly, linear feedback are used as PD control and LQR control. Nonlinear 

control are also concerned. In this case, hierarchical sliding mode control is examined due to 

its successful operation on under-actuated SIMO system.  

Then, from a similar form with IP, acrobot is concerned. Thence, based on acrobot structure, 

mathematical dynamic equations of a kind of two-legged robot with elastic legs are generated 

and analized. This robot can be considerred to be closed to athlete robot. Due to the 

complexity of complete mathematical dynamic equation, an approximated equivalent model 

of robot is presented. Under this equivalent model, LQR and hierarchical sliding mode control 

are examined sucessfully on simulation, only. Robot can stand on one leg. By the uncertainty 

of equivalent model, hierarchical sliding mode control is proven to be more efficient in this 

case. Beside robot with elastic legs, mathematical model of elastic inverted pendulum are 

presented and analyzed. PD and hierarchical sliding mode controllers are applied for these 

robot. Genetic algorithm are used to find or optimize controllers in both simulation and 

experiment. 

Also, real experimental platforms of elastic inverted pendulum and robot with elastic legs are 

presented and experimental results under linear feedback controllers are introduced. Then, 

conclusion which summerized the content of thesis, the direction in the future for athlete robot 

object and methods ends the thesis. 
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Chapter 1 : INVERSE PENDULUM – BASIC MODEL OF 

ROBOT SYSTEM 

IP is a basic model for control theory. Its history was begin by construction of Robege (1960). 

Then, some representative researchers, such as, Schaefer and Cannon (1966), Furuta et al. 

(1991) developed basic theory for this model [1]. In this period, researches on pendulum 

mostly are mathematical problems and this model is not popular as a model for widely 

researching in control engineering. But, after years of survey on theory and mathematics on 

IP, Furuta invented Rotary IP – Furuta pendulum – and opened the ability of real experiment 

for this kind of model [2]. Since then, a lot of researches are developed based on this pioneer 

invention. Its simple mechanical structure – with only one motor and two simple sensors 

which in most cases are two encoders [3] – makes fabrication to be possible in usual 

laboratories, even in undeveloped countries. Moreover, nonlinear and under-actuated 

characteristics in mathematics makes it an ideal model for most control theory experiment. 

And very fast, following this achievement, big amount of algorithms were tested both in 

algorithm theory and experiment [4], [5].  

  
 

 

Fig 1.3 : Products stimulated by IP controlling 

A lot of control algorithms are utilized to balance IP [4]. PID control [64], [65], has been 

proven to have good performances and control parameters are based on trial and error method 

[65] or searching algorithm, such as genetic algorithm [66] or LQR [36], [14], pole-placement 

control [67], [68]. The structure of these algorithms is simple and offers a lot of facilities for 

embedded systems. Fuzzy controller, which was presented by Zadeh in 1965 [69], represents 

also a good solution for developing new implementation techniques. Nonlinear control, 

especially SMC [70], introduces new robust algorithms that ensure a good stability of motion 

[71]. Hybrid controllers [18], [19], [59] have been presented to combine the advantages of 

intelligent systems with non linear algorithms. 
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Figure 1.1: Dasher robot (left) and AR in Tokyo University (right) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

Chapter 2: INVERSE PENDULUM-DYNAMICS 

Beside the classical model-IP on cart, some other developed models are presented: more links 

are added to create double IP; changing in mechanical structure creates pendubot; replacing 

the position of actuator in pendubot creates acrobot. Dynamic equations are generated and 

they are the base for control algorithms in following sections. Under dynamic equations, a 

simple linear feedback controller is applied in some models before any other survey on other 

kinds of controllers. IP on cart (or Cart and Pole system) concludes of a cart, which moves in 

horizontal direction, and a pole, which rotates around an axis on cart. 

a) Case 1: Distributed Mass Pendulum 

We consider that the mass of pendulum is distributed along the length (Figure 2.1). 

 

Figure 2.1: Cart and pole system with the pendulum as homogeneity 

The dynamic model is inferred as  
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Figure 2.2: Balancing robot on wheel 

For the balancing robot, equation of the system can be described as: 
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Figure 2.3: Mathematical structure of Pendubot 

The dynamic equations of Pendubot are inferred as 
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Figure 2.4: Model of acrobot 
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Considering that the friction is very small, the dynamic equations are 

 
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Because 1 0   due to mechanical structure of acrobot, (2.7) becomes 
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Chapter 3: LYAPUNOV BASED ALGORITMS FOR 

INVERSE PENDULUM MODELS 

3.1. Lyapunov method for Cart and Pole 

Consider the dynamic model of the Cart and Pole system. 

Theorem 3.1: For the system that describes this dynamic model, if the control law is 

1 2
1 2

1 2

u x x
 

 
   

(3.1) 

where the coefficients 1 0  , 2 0  ,  ,  ,   satisfy the following conditions: 

1 1max   (3.2) 

1 2 1max         (3.3) 

   1min 1 1 2 1max

1
0

4
               

(3.4) 
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(3.5) 

0
4


    

(3.6) 

2   (3.7) 

The system is asymptotically stable. 

3.2. Robust control  

Consider the dynamic equations of IP model and the dynamic equations are presented in 

matrix form: 

1 1

32 1 2 1 2 2

00 1x x
u

x x x x  

      
        

       
 

(3.8) 

where the state constraints (sector-type) are defined as  

1 1 1x    ;

2 2 2x       

               (3.9) 

Theorem 3.2: Consider the IP model (3.8) and control law 

u ky        (3.10) 

where the range of variables is constrained by                (3.9)  
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If there exists parameters  , k , 1c , 2c , 3c , 4c , 5c , 6c  that satisfy these conditions 

0 4   (3.11) 

1
0

2
k


   (3.12) 

 
1

0 2Re
2
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j I A B 
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    
   

 
                                   (3.13) 

then, this model is asymptotically stabilized 

3.3. Fuzzy-Lyapunov based Algorithm for IP models 

Consider a nonlinear system of IP model described by 

     x f x f x b b u     ,   00x x                                                                                                                  (3.14) 

where:  f x  and b  represent the uncertainty of  f x  and b , respectively 

Fuzzy model can be described by r fuzzy rules. The i
th 

rule is 

If 1z  is 1iF  and  2z  is 2iF and … and pz  is ipF  then 

   i i i ix B B u A A x             

 

(3.15) 

  1
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F x

elsewhere

  
     

  



  
(3.16) 

Theorem 3.3: Consider the control law is PD form with k  is feedback matrix. If 

following conditions are verified: 

a) min maxk k k    

b)     
1 1 1

max
ˆRe 0Tc j I H b k  

       (3.17) 

where  1

minH A I k M    is Hurwitz and 1ˆ /b b d k   

c) The pair  ˆ,H b  is controllable (3.18) 

Then, this model is asymptotically stabilized. 
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Chapter 4: FUZZY CONTROL FOR INVERSE 

PENDULUM MODELS 

4.1. Lyapunov Method based Fuzzy Controller.  

The knowledge of experts and the GA method do not guarantee the mathematical stability of 

system under fuzzy controller. Thence, Lyapunov criterion can be used to designed a fuzzy 

controller. We consider the IP model, Lyapunov function is selected as: 

   2 2 2 2

1 2 1 2 1 2

1 1
2 2

2 2 2
V x x x x x x


     

  
        

  
 

         (4.1) 

The derivative with respect time is 

3V u                                        (4.2) 

where 2 3 2 2

1 1 2 2 2 1 2 2 1 2 1 25 2 5 2 2x x x x x x x x x         ; 1 22 5x x    

By using Lyapunov method, the stability of motion is obtained if the function                                    

(4.2) is negative definite. The new fuzzy controller has to implement these conditions. 

Table 1: Selection condition of control signal to satisfy Lyapunov criterion 

Condition of variables Condition of control signal to keep system stable 

0    
1 2 0x x   0    3minu     

0    3maxu     

1 2 0x x   0    3minu     

0    3maxu     

0   
1 2 0x x   0    3minu     

0    3maxu     

1 2 0x x   0    3minu     

0    3maxu     

Memberships of variables 1x  and 2x are shown in Figure 4.1 and Figure 4.2. From column 

1, 2 of Figure 4.3 and Table 1, the range of controller is shown in the column 3 of Table 1. 

Then, appropriate memberships for output are selected in Figure 4.3.  
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Figure 4.1: Memberships of x1 

 

Figure 4.2: Memberships of x2 

 

Figure 4.3: Memberships of output 

4.2. Hybrid Controller.  

Sliding Mode Control represents a very good technique for controlling the nonlinear systems 

by fuzzy techniques. Also, this method can be developed as a hierarchical structure for 

cascade connections of the IP models [54]-[58]. 

Assume that a dynamic equations of a Single Input Multiple Output (SIMO) system are 

   i i i i iA B u     (4.3) 

where i , di : state variables, reference signal of each variable; u : control input signal 

Denote: i i die                                                                                                                (4.4) 

as the error between state variable and reference signal 

From (4.3), (4.4) the equivalent equations of system will be 

i i ie f g u   (4.5) 

A controller can be designed for system (4.5) to stabilize variables 0t

ie    

or t

i id  . 

In Figure 4.4, a structure of hierarchcal sliding surfaces is presented. 

 

Figure 4.4: Hierarchical sliding surfaces structure for system 

Sliding surfaces are denote as 

k k k ks c e e    k n  (4.6) 
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1 1k k k kS a S s     k n  (4.7) 

where 1ia const  ; 0 0 0a S  . 
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From (4.8), it yields  
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The thk  layer SMC law is defined as 

1k k eqk swku u u u    k n  (4.10) 

swku , eqku  is defiend as switching and equivalent control law for thk  layer. 

The final control signal is infered 

1

1

sgn
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j r eqr n n n n

r j r

n nn

j r
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a b u S S

u

a b
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 
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(4.11) 

Theorem 4.1 For these dynamic equations, the  sliding surfaces and control law 

specified in the previous part, the surface kS  is asymptotically stable. 
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Chapter 5: INVERSE PENDULUM MODELS WITH 

ELASTIC COMPONENTS 

5.1. Elastic Inverted pendulum 

In the previous sections, The IP models [105], [106], are based on the assumption that 

the pendulum bar is rigid. In all these cases, the model dynamics are defined by lumped 

parameter systems. In real appications , the mechanical architecture of the IP model 

contains flexible bars (Elastic IP model-E-IP model) that impose a new mathematical 

treatement, in which the bar dynamics are described by Partial Differential Equaions 

(PDE). 

 

Figure 5.1: E-IP with tip mass is fixed on cart 

Illustrative example of E-IP models are shown in Figure 5.1, Figure 5.2. In literature, 

few researchers investigate the control problem of these models  [73]-[75] but they do 

not use a rigorous mathematical suport for the controller design. Also, the 

performances achieved by proposed algorithms do not prove the quality of controllers. 

 

Figure 5.2: E-IP un-fixed on Cart 

 
Figure 5.3: E-IP on Cart 
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According the Hamilton’s principle 
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(5.1) 
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and non-conservative work. 

The dynamic model will be 
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(5.2) 

     2, , 0, cos sinpendulum k l t k l t l rm EI k l tg               (5.3) 

 2 co sin 0s g Ek kx r Ik             
(5.4) 

     0, 0, , 0k t k t k l t      
(5.5) 

 

Define   i t ,  iX x  as function of time of 
thi  mode shape and function of mode 

shape of point x  and   ,k x t  can be assumed to be      
1

,
n

i i

i

k x t t X x


  [76]. We 

take into account only the first mode-shape . The dynamic equations of system are: 
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 

 

 

 

  2

2

2

1 1 1

2

2

1

sin

cos

2 sin

cos

sin sin

c

cos 2 sin

cos

os
2

2

cart pendulum pendulum pendulum

pendulum

X

l
m l m r

l

X l

X l

X l

m l m

l
m l

F

   

    

 



 

 

     

 





 
 
  



 

  

 
       

   
 
 

 
      
 



 

  

  0

  

 

 

 

(5.6) 

   

   

 

1

2 2

2

3 2
2

2

3

2

1 2 2

cos

sin

2

sin

cos
3 2

+ g sin
2

cos

2

pendulum pendulum

pendulum pendulum

g

X l r X l

X l l

l l
J m l m l r

l
m gl X l

X gl

r

m

     

 















  

 

   

  

   
        
   

 
  

     
   

  

   





    0 

 

7) 

    4

2 0cos sinpendulum X l X l l r gm               
8) 

5.2. Elastic C-shaped Leg Models.  

C-haped legs represent a special architecture of compliant elastic legs have been 

introduced to make the motion of two-legged robot more flexible 

 

 
 

Figure 5.4: Curved beam  

Shear:  cosrF F                                     (5.9) 

Axial:  sinF F                                      (5.10) 

Bending moment:  sinM FR                                    (5.11) 

Strain energy due to bending moment M is  
2

1
2

M
U d

AeE
                                        

 (5.12) 

where e  is eccentricity which is calculated as ne R r  . If assuming that 10R
h
 , 
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it yields 

2

1
2

M R
U d

EI
                                         

(5.13) 

Strain energy due to axial force F  is 

2

2
2

F R
U d

AE

    
(5.14) 

Strain energy due to moment which is created by axial force F  is 

3

MF
U d

AE

    (5.15) 

The sign “-” in (5.15) is caused by the opposite direction of deflection to force F 
2

4
2

rF R
U C d

AG
   

(5.16) 

The Hook’s law for linear spring is 

F k  (5.17) 

where: F  is the force that applies on spring through the length of spring; k  is the 

constant of the spring;   is the deflection of the spring. 

When consider C-shaped leg, the parameter k  is not the constant when regarding this 

kind of leg as a linear spring. The value of k  is different in each situation of leg when 

touching the ground. 

 

 
Figure 5.5: Cross section of C-shaped leg 

 
Figure 5.6: Effect of external force  

to C-shaped leg 

5.3. C-shaped Leg Robot Control by Lyapunov Methods. 

Considering that two legs of robot have the same behavior, motion of robot with elastic 

legs is devided into two phases: stance and flight phase. In stance phase, legs touch the 

ground in all period. Otherwise, legs are off ground in all period of flight phase. A PD 

controller which is designed based on Lyapunov stability’s theorem is surveyed.  
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Stance phase 

 

Fight phase 

 

Figure 5.7: Equivalent IP model of robot with compliant legs, where: 

a/ linear spring/b)rotational spring 

Rotational deflection of elastic leg is 

r

U

M






 
(5.18) 

It yields 

    2

4

1
sin 2 sin 2

2

l

l

M EI
k

R


   

 
 

     
 

 

Considering the elastic leg is hard and variation of shape in linear spring is small, 

by using Lagrange method, equations of stance phase in Figure 5.7b are obtained 

as 

     * 2 * * *

1 1 1 1 2 3 2 3sin , , ,rM l I q M gl q k q h q q         (5.19) 

A PD linear feedback controller is suggested to be used in this case 

1 1 2 1q q                                              (5.20) 

Theorem 5.1: If system (5.19) is controlled by                                         (5.20) 

where the control parameters satisfy the conditions 

0rk
  , 0   

                           (5.21) 

1 0  ; 2 0   (5.22) 

(5.24) 
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 

   

2 2 2

1 2 max 1

1

2
0

1

2
r

mgl

mgl k mgl

    

    

 
    

 
     
  

 

 

(5.23) 

where: * 2 *M l I   

then, this system is stable 
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Chapter 6: JUMPING MOTION CONTROL 

ALGORITHMS 

A multi-body robot system in Figure 6.1 was concerned to survey the jumping 

behaviour. There are two legs to determine the motion. Each leg concludes of two 

components:  

- the lower part (foot) with a hybrid pneumatic/electro-hydraulic actuator and 

ER-fluid damper. 

- The upper leg with a conventional electric drive. 

 
Figure 6.1: Model structure of jumping 

robot 
 

Figure 6.2: Platform of jumping 

robot 

In order to simplify the technological problem, we considering that in jumping 

motion, two legs have the same posture. The mathematical model is not used and 

the structure of model in this section is described in Figure 6.2. 

Similarly to walking model, jumping concludes two phases but these phases are 

defined diferrently: stance and flight phase. In stance phase, one foot touches the 

ground. And, in flight phase, both legs are off the ground. The boundary of these 

two phases are defined as two motions conditions:  touch-down and take-off. These 

motions create a sequence when robot hits the ground (landing impact sequence) 

and when robot takes off the ground. This cycle is repeated periodically by robot 

(Figure 6.3, Figure 6.4). The feet is assumed not to slip beyond surface of the 

ground and always stay on contact with the ground when touching the ground. 

 

Figure 6.3: Cycle of motion 
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Figure 6.4: Trajectory of jumping motion 

 

6.1. Stance Phase Model 

This phase is determiner by contact between the ground and the leg in Figure 6.5 

 
Figure 6.5: mechanical structure of leg for 

jumping robot 

 
Figure 6.6: mathematical structure of leg 

for jumping robot 

The dynamic model 

 
2

1 0sin 2 aM d l MgR EI              (6.1)  

The initial condition of (6.1) is 

  00   
                                  (6.2)  

Or 

 
2

1 0 e aM d l J K              
(6.3)  

where the equivalent elastic coefficient of the foot is defined as (when regarding 
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sin  )  

2eK MgR EI   (6.4)  

and   denotes the equivalent torque of the damper (the effect of the ER fluid and 

local. 

6.2. Stance Phase: Touch-Down Sequence 

Quality of motion in jumping period is important. The conventional feet discussed 

in [93] are based by passive dampers which consist of springs and mechanical 

elastic components. When the leg hits the ground, the damping force increases 

determining vibrations in mechanical structure that can disturb the evolution of the 

robot. It is necessary to select appropriate equivalent stiffness and damping 

coefficients to achieve the desired performances. For this reason, an active damper 

with ER fluids actuator and a skyhook viscocity controller is proposed (in Figure 

6.5). The actuator consists of a cyclinder with piston, a spring and an ER fluid. The 

touch-down sequence starts at the instant when the elastic foot hits the ground. The 

main instant sequence is presented in Figure 6.7. 

 
Touch-Down Sequence 

Initial State 

 
Touch-Down Sequence 

Intermediate State 

 
Touch-Down Sequence Final 

State 

Figure 6.7: Touch-Down Sequence 

Case 1: Actuator as passive damper system 

The Touch-Down model is illustrated in Figure 6.8 where the spring 
fK , sK  

denotes te equivalent sprinf foefficient of elastic foot and elastic parameters, 

respectively, of the actuator that operates as a semi-active damper system. In this 

case, we assume that the active torque which is developed by actuator is zero 

( 0a  ), and the actuator operates as a damper, only. This system varies the 

damping forces using a feedback determined by the dynamics of masses. 
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Figure 6.8: Touch-Down passive damper model 

 

Figure 6.9: Ground-hook damper model 

 

Figure 6.10: Touch-Down sequence control system 

The dynamic behaviour of the passive model (in Figure 6.8) is described by using 

the same procedure as which was discussed in previous section. 

   *

0 1 2 1 2sin 2 SJ MgR EI K z z R c z z             (6.5) 

where 1z , 2z  represent the vertical positions of the two links of leg (B, C); SK  and 
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*R  are the elastic coefficient of damper spring and equivalent radius of the damper 

motion. 

*

0 cos sinR l R    (6.6) 

where c  is the passive damping coefficient. 

The quality of the system can be evaluated by the analysis of the transmissibility 

that is defined as in [96]. 

     2 1T z z    (6.7) 

Where 

 1 0 1sin 1 cos cosz l R l       
(6.8) 

 2 0 sin 1 cosz l R     (6.9) 

The analyse of the transmissibility of the model which is described in (6.5) is 

complex due to nonlinear structure. Assuming that oscillations around equilibrium 

point A is small and the following constraint is verified 

0

1R
l

   
(6.10) 

Then 

2 0z l   (6.11) 

*

0R l  (6.12) 

Substituting (6.11) and (6.12) into (6.5), we obtain 

2 2 2

0 0 0 0
2 2 2 1 1

2G S Sc MgR EI K l K l cl
z z z z z

J J J J

   
      

(6.13) 

Applying the Laplace transform, it yields 

 
 

 

2
2 0
0

2

2
2 0 01

2

S

G S

cl
K l sz s JT s

c MgR EI K lz s
s s

J J





 
  

 

 

 

(6.14) 

 Substitute s j  into (6.14), we obtain 

 
 

 

 

   
2

2

1

1 2

1 2

n

n n

z j j
T j

z j j

   


     


 

  
 

 

(6.15) 

where n  is natural frequency of the system which is calculated as below 

2

02 S
n

MgR EI K l

J


 
  

(6.16) 
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and   is the equivalent passive damping factor ratios which is calculated as below 

 
0

2

02 2
p

S

c

J MgR EI K l







 
 

(6.17)  

Case 2: Actuator as semiactive damper system (ground system) 

A “Groundhook” strategy (in Figure 6.9) is proposed to facilitate the study of 

vibrations and to find control solutions to reduce vertical oscillatioins. A fictitous 

damper  with equivalent viscosity coefficient Gc  is considered between body and 

ground 

 

 
max 2 2 1 2

min 2 2 1 2

0

0
G

c z if z z z
c

c z if z z z

  
 

  
 

(6.18)  

A similar procedure results are shown in (6.19) below 

2 2

0 0 0
2 2 2 1

2G S Sc MgR EI K l K l
z z z z

J J J

   
     

(6.19)  

which leads to 

 
 

 

2
2 0

2
2 0 01

2

S

G S

z s K l
T s

c MgR EI K lz s
s s

J J


 

  
 

 
 

(6.20)  

 
 

 
2

2

1
1 2 G

n n

z j
T j

z j
j

 


  


 

 
 

   
 

 
 

(6.21)  

where n  is natural frequency of system and shown in (6.16) and G  is the 

equivalent damping factor ratios 

 
0

2

02 2

G
G

S

c

J MgR EI K l







 
 

(6.22)  

2

0

2

02

S

S

K l

MgR EI K l
 

 
 

(6.23)  

Case 3: Actuator as ER Driver System 

The actuator operates as ER driver system that develops an active torque a  

   *

0 1 2 1 2sin 2 S aJ MgR EI K z z R c z z               (6.24)  

where c  is non-active value of the ER damping coefficient. Considering the 

constraint in (6.10), this model can be written as 
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2 2

0 0 0 0 0
1 1

2 1S S
a

c l MgR EI K l K l c l
z z

J J J J J

 
   

  
       

(6.25)  

New state variables are defined as 

 

 

1 2

1 2

TT

T

x x x

z z z

      

 

 

 

(6.26)  

where z  denotes the disturbance variable that modify the system behaviour.  

The dynamic model becomes 

ax Ax b Dz    (6.27)  

Ty c x  (6.28)  

where  

2 2

0 0 0

0 1

2 S
A MgR EI K l c l

J J



 
      
  

; 

0

1b

J

 
 
 
 

; 
0 0

0 0

S
D K l c l

J J



 
 
 
 

 

 

(6.29)  

The matrix A is stable but the stability, which describes system performance, is 

worser by the disturbance variable z . This disturbance can be evaluated in terms 

of state variables as 

1z   ( *  ) (6.30)  

2z   ( *  ) (6.31)  

 where  ,   are positive constants. Therefore, the dynamic model in (6.27) 

becomes 

*

ax A x b   (6.32)  

Where 

* 2 2

0 0 0

0 1

2 S
A MgR EI K l c l

J J


 

 
        
  

 

 

(6.33)  

Clearly, the disturbances z  determine the instability of the system ( *A  is an 

unstable matrix). The control law is proposed as 

a ky    (6.34)  

Where 0k const   satisfies the sector condition below 

min maxk k k   (6.35)  
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Theorem 6.1: The state vector  1 2

TT
x x       converges toward zero if the 

following conditions are satisfied 

a) Matrix *H A E   is Hurwitz, where TE ec is a symmetrical matrix. 

b)  ,H b  is controllable and  ,H c  is observable. 

c)    
1 1 1Re 0

2

Tc
sI H b ek k

   
    

 
 

 

(6.36) 

Proof: 

Selecting Lyapunov function as 

2

Tx Px
V   

(6.37)  

where P  is a symmetrical positive definite matrix. Derivativing (6.37) by time and 

using (6.32), we obtain 

 * * 2
T

T TV x A PA x x Pbu   
  

 
(6.38)  

Or 

    * * 2 2
T

T T TV x A E P P A E x x PEu x Pbu      
  

 
(6.39)  

Considering TE wc and the control law in (6.34), the last two terms can be 

written as 

 2 2 2 2T T T T e
x PEx x Pbu x P ex bu x P b u

k

 
     

 
 

(6.40)  

From (6.35), after some calculations, it yields 

    
2

* * 2
2

T
T

T T e c u
V x A E P P A E x x P b u

k k

                 
 

 

(6.41)  

By using the Yakubovich-Kalman-Popov Lemma [98] and conditions a, b, c of 

Theorem 6.1, it yields 

   * *
T

TA E P P A E qq     
  

 
(6.42)  

1

2

Te c
P b q k

k

 
   

 
 

(6.43)  

Substituting (6.42), (6.43) into (6.41), we obtain 
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 
2

1 0TV x q u k      
(6.44)  

Remark 6.1: 

Define the transfer function  G s  as follows 

     
1 1

2

Tc
G s sI H b ek

     
(6.45)  

Considering the inequality (6.35) and condition c) of the Theorem 6.1 can be re-

written as circle criterion [98] 

 

 

1

max

1

min

Re 0
k G j

k G j









 
   

 
(6.46)  

6.3. Stance Phase: Take-off Sequence 

 

Take-off Sequence Initial 

State 

 

 

Take-off Sequence 

Intermediate State 

 

Take-off Sequence Final 

State 

Figure 6.11: Take-off Sequence 

During this sequence, actuator system has to develop a sufficiently large energetic 

pulse to ensure a jumping motion on specified trajectory. This condition can be 

synthesized as 

  *W t W  (6.47)  

 
0

dW t

dt
   

(6.48)  

where  0 0W   and *W  is critical energy that satisfies the trajectory parameters 

and 0const    determined by the take-off impulse. 
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Define *  the starting velocity on the flight trajectory for the position *   (in 

Figure 6.11c). The critical energy will be 

   
22

* * *

2

0

1 1

2 2
fW K J

l
    

(6.49)  

Total active energy can be expressed as 

2 21 1

2 2

T

fW w w K J     

(6.50)  

where w  is the energy component vector that is calculated as in (6.51) below and 

fK  is the equivalent elastic coefficient of the foot. 

2 2

T

e

w

K J

 

 
 
 
 
 
  

 

 

 

(6.51)  

 

Figure 6.12: energy ellipsoid 

 
Figure 6.13: Take-off sequence control system 

The constraint (6.47) is shown in the ellipsoid energy (in Figure 6.12) and the 

control system (in Figure 6.13) ensures the jumping conditions. 

Theorem 6.2: The jumping conditions (6.47) and (6.48) are satisfied if the control 

law has the form below 

1 2

J J

a k k      (6.52)  

where 1

Jk , 2

Jk  are the controller gains, positive constants, that satisfy following 
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conditions: 

1

J

f ek K K   (6.53)  

 2 1 0 02 2J J

f ek k c K K      (6.54)  

Proof 

Dynamic model can be inferred from (6.1)-(6.3) where the damper is considered as 

a passive damper with the damping coefficient 0c  and the actuator operates as a 

pneumatic system that develops an active torque a  

   0 0 2 aJ c MgR EI           
(6.55)  

Where 

0a pSl    
(6.56)  

0fp p p    is the expression variation in the actuator and S  is the area of piston 

surface. 

The derivative of (6.49) will be 

fW K J    (6.57)  

Substituting the dynamic model in (6.53), it yields 

 0 0f e aW K c K              (6.58)  

Substitute the control law in (6.52) into (6.58), we obtain 

    2

1 2 0 0

J J

f eW K K k k c           
(6.59)  

Then, by applying the inequality 

2 2

2 2

 
     

(6.60)  

(6.58) becomes  

2 2

1 2
2 2

W
 

    
(6.61)  

Where 

1 1

J

f ek K K     (6.62)  

 2 2 1 0 02 2J J

f ek k c K K        (6.63)  

From (6.53), (6.54), it yield 1 0  , 2 0  . Combining with (6.61), we obtain 



28 

 

0W    (6.64)  

Considering the following relations 

12
fK


  ; 2 3

2

J
     

(6.65)  

where 3 0const   , then, W  can be written as 

2 2 2 2

3

1 1

2 2 2 2

f

f

K J
W K J W        

   
        

   
 

(6.66)  

From (6.64) and (6.66), it can be concluded that W  is an increasing positive 

definite function. For the final position of *  , the limit value of *W W  is 

achieved. 
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Chapter 7: SIMULATION OF CONTROL 

ALGORITHMS 

7.1. LQR Control Simulation of E-IP Model. 

Consider the E-IP model (fig 5.3) and a LQR controller where the matrix R is 

assumed as identity matrix and the components of matrix Q are selected through 

GA. Simulating system under LQR controller in 10s with sample time as 10ms, 

there are 1001 samples of system response in a period of simulation time. 

 

Figure 7.1: Comparison among responses of E-IP under LQR controllers through 

1  (rad) 

 

Figure 7.2: Comparison among responses of E-IP under LQR controllers through 2  

(rad) 

7.2. HSM Control for E-IP System.  

Consider a HSM control where the control signal is  
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   1 2 1 1 2 2 2 3 3 3 3 3 3

1 2 1 2 2 3
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   


 
 

 

 

(7.1)  

Figure 7.3: Comparison among responses of E-IP under HSM controllers through 1  

(rad) 

 

Figure 7.4: Comparison among responses of E-IP under HSM controllers through 2  

(rad) 

7.3. Conventional PD Control for Two-Legged Robot.  

Consider a conventional PD controllers for the motion control of AR robot. 

 
Figure 7.5: Structure of PID controller for step motion of AR 

Simulation results of step-motion under PID controller which is described in Figure 

7.5 are listed as below. 
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Figure 7.6: Reference signal 1_ ref and 

1  

 
Figure 7.7: Reference signal 

2 _ ref and 2  

 
Figure 7.8: Reference signal 

3_ ref and 3  

 
Figure 7.9: Reference signal 4 _ ref and 4  

 
  

Figure 7.10: Motion of AR 

 

 

 

 

 

 

 

 

 



32 

 

Chapter 8: EXPERIMENTAL STUDY OF MODELS 

WITH ELASTIC COMPONENTS 

8.1. Elastic Inverted Pendulum 

An experimental E-IP platform is presented in Figure 8.1 below. According to mathematical 

model in Figure 5.1, one MPU sensor is located at the middle of the elastic beam to measure 

angle 2 . Another MPU sensor is located at the top of the elastic beam to measure angle 

1  

 
(a) 

 
(b) 

Figure 8.1: Experimental model of E-IP 
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8.2. Two-legged robot with Elastic legs 

 

Figure 8.2: Electronics structure for E-IP model 

 
Figure 8.3: Experimental structure of AR hardware 

 

 

 



34 

 

 

 

Figure 8.4: Experimental model of AR in Solidworks description 

 

Figure 8.5: Real experimental robot in behind direction 
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Figure 8.6: Real experimental robot in crossover direction 
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Figure 8.7: Experimental platform- mechanical architecture (Photos) 
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