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1 Main problem approached in the thesis

Let zA
��
A=1;:::;2n

be a set of bosonic variables that parameterize the time-
evolution of a dynamical system. Assume the considered system is described
by a �rst-order action

S0
�
zA
�
=

Z t2

t1

dt
�
aA (z) _z

A � V (z)
�
�
Z t2

t1

dtL0 (z; _z) ; (1)

with aA (z) the one-form potential and V (z) a given potential. In what
follows we consider the case where the symplectic two-form

!AB (z) =
@aB
@zA

� @aA
@zB

= �!BA (z) (2)

is non-degenerate, i.e., det!AB 6= 0 (locally). The non-degeneracy of the
symplectic two-form leads to the existence of a bracket structure, locally
given by

[F1; F2] = !AB
@F1
@zA

@F2
@zB

; (3)

in terms of which the Euler�Lagrange equations of motion [1], �L0
�zA

� @L0
@zA

�
d
dt

�
@L0
@ _zA

�
= 0, deriving from the �rst-order variational principle based on (1),

can be put in the form

HA � _zA �
�
zA; V

�
= 0; (4)

with !AB the inverse of !AB. The �xation of integration constants in the
general solution of equations (4) requires to impose the initial conditions

zA (t0) = zA0 ; t1 � t0 � t2: (5)

On the one hand, it is easy to see that the Lagrangian from (1) is degen-
erate in the sense of the Dirac approach [2]�[4], but the canonical analysis
of this Lagrangian emphasizes only second-class constraints. Then, by pass-
ing to the Dirac bracket we �nd that the dynamics in terms of independent
variables is precisely described by equations (4). In the context of �rst-order
systems, an alternative viewpoint to constrained systems has been formulated
in [5]. On the other hand, equations (4) may be regarded as the Hamilton
equations [6] for a system with the Hamiltonian H0 (z) � V (z). Thus, given
a �rst-order formulation of dynamics, we always �nd that the Euler�Lagrange
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and Hamilton equations expressed in terms of the same variables coincide.
Actually, we have that �L0

�zA
= !ABH

B.
The main problem approached in the thesis is the following: given a �rst-

order formulation of dynamics in terms of some variables, does there exist an
equivalent, non-degenerate, second-order Lagrangian formulation in terms of
the same variables?

2 Results

In the sequel we will brie�y present the main results of the thesis.
The �rst main result is given by Theorems 1�2.

Theorem 1 For any �rst-order Lagrangian L0 (z; _z) = aA (z) _z
A�V (z) with

a non-degenerate symplectic two-form there exists a second-order Lagrangian
�L0 (z; _z) =

1
2
kAB _z

A _zB � �V (z) such that�
�L0
�zA

= 0;
zA (t0) = zA0 ;

,
(

� �L0
�zA

= 0;
zA (t0) = zA0 ; _z

A (t0) =
�
zA; V

���
zA0
;

(6)

if and only if there exists a constant, symmetric, and invertible matrix kAB
such that the relations

kAC
@
��
zC ; V

�
; V
�

@zB
= kBC

@
��
zC ; V

�
; V
�

@zA
: (7)

are ful�lled.

Theorem 1 proves the existence of a Lagrangian formulation for the dy-
namics of a �rst-order second-order system with the following properties: a)
it is non-degenerate and second-order; b) it is equivalent to the �rst-order
formulation (in terms of the same variables) at the level of the solutions to the
equations of motion subject to some mutually compatible initial conditions.
From the above theorem it follows that �V (z) is solution to the equations

� @ �V

@zA
= kAC

��
zC ; V

�
; V
�
; (8)

such that
� �L0
�zA

= �kABEB � �kAB
�
�zB �

��
zB; V

�
; V
��
: (9)
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In the sequel we pass to �eld theories, described by �rst-order actions of
the type

S0
�
QA
�
=

Z
dDx

�
�A (Q) _Q

A � V
�
QA; @iQ

A
��
�
Z
dDxL0

�
QA; @�Q

A
�
:

(10)
In (10) we have used the standard notations _f = @0f = @f=@t and @ig =
@g=@xi, and the �at Minkowski metric of �mostly minus�signature, ��� =
��� = (+� : : :�). We consider again that the symplectic two-form


AB (x) =
@�B
@QA

(x)� @�A
@QB

(x) = �
BA (x) (11)

is non-degenerate, which leads to the bracket structure�
F
�
x0
�
; G
�
x0
��
=

Z
dD�1z

�F

�QA (x0; z)

AB

�
x0; z

� �G

�QB (x0; z)
; (12)

with 
AB the inverse of 
AB. The �eld equations deriving from (10) read as

HA � _QA (x)�
�
QA (x) ; V

�
x0
��
= 0; (13)

with V (x0) =
R
dD�1xV

�
QA; @iQ

A
�
. Regarding equations (13) we take the

initial conditions
QA (t0;x) = QA0 (x) : (14)

Along the same line with the �nite-dimensional case, we arrive at the
following theorem.

Theorem 2 For any �rst-order Lagrangian L0
�
QA; @�Q

A
�
= �A (Q) _Q

A �
V
�
QA; @iQ

A
�
with a non-degenerate symplectic two-form there exists a second-

order Lagrangian �L0
�
QA; @�Q

A
�
= 1

2
�AB _Q

A _QB � �V
�
QA; @iQ

A
�
such that

�
�L0
�QA

= 0;

QA (t0;x) = QA0 (x) ;
,

8><>:
� �L0
�QA

= 0;

QA (t0;x) = QA0 (x) ;
_QA (t0;x) =

�
QA (x) ; V (x0)

���
QA0 (x)

;
(15)

if and only if there exists a constant, symmetric, and invertible matrix �AB
such that the relations

�AC
�
��
QC ; V

�
; V
�

�QB
(x) = �BC

�
��
QC ; V

�
; V
�

�QA
(x) (16)

are ful�lled.
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Theorem 2 extends the result of Theorem 1 to �eld theories. Moreover,
we can show that �V

�
QA; @iQ

A
�
is solution to the equations

� �V
�QA

(x) = ��AC
��
QC (x) ; V

�
x0
��
; V
�
x0
��
; (17)

from which we obtain that

� �L0
�QA

= ��ABEB � ��AB
�
�QB (x)�

��
QB (x) ; V

�
x0
��
; V
�
x0
���

: (18)

Our results can be easily managed to cover the case of fermionic degrees of
freedom by introducing some phase factors and right or left derivatives.
Examples
e1) Let us take the case of scalar �eld theories described by the �rst-order

Lagrangian

L0 = _'a�a �
1

2
�ab�a�b +

1

2
�ab (@i'

a)
�
@i'b

�
� Z ('a) ; (19)

where �ab is a constant, symmetric, and invertible matrix, �ab is the inverse
of �ab, and Z ('a) is an arbitrary function depending only on the undi¤eren-
tiated scalar �elds. The corresponding second-order Lagrangian reads as

�L0 = ~c
�
(@�'

a) (@��a)� �ab�a
@Z

@'b

�
; (20)

where ~c is a real constant.
e2) For the Schrödinger Lagrangian with a time-independent potential

L0 = i~ � _ +  �
�
~2

2m
@i@i � U (x)

�
 ; (21)

we �nd that

�L0 = �

 
~ _ � _ � 1

~
 �
�
~2

2m
@i@i � U (x)

�2
 

!
; (22)

with � a real constant.
e3) The Dirac Lagrangian

L0 = � a
�
i (�)a b

�
@� 

b
�
�m a

�
; (23)
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leads to the Klein�Gordon Lagrangian

�L0 = �
��
@�� a

�
@� a �m2� a 

a
�
; (24)

with � an arbitrary, non-vanishing real constant.
e4) Finally, the Lagrangian of gauge-�xed massless vector �elds

L0 = _A��� +
1

2
���

� � 1
2
(@iA�) @

iA� ; (25)

yields the second-order Lagrangian

�L0 =  (@�A�) @
��� ; (26)

with  an arbitrary, non-vanishing real constant.
The second main result is synthesized by Theorems 3�4.

Theorem 3 For any �rst-order Lagrangian L0 (z; _z) = aA (z) _z
A�V (z) with

a nondegenerate symplectic two-form there exists a second-order Lagrangian
L̂0 (z; _z) =

1
2
kAB

�
_zA �

�
zA; V

�� �
_zB �

�
zB; V

��
such that�

�L0
�zA

= 0;
zA (t0) = zA 0;

,
(

�L̂0
�zA

= 0;
zA (t0) = zA 0; _z

A (t0) =
�
zA; V

���
zA 0

; (27)

where kAB is a constant, symmetric, and invertible matrix.

It is easy to see that the Euler�Lagrange equations that derive from L̂0
are expressed by

ÊA � �L̂0
�zA

� �kAB�zB +
 
kAC

@
�
zC ; V

�
@zB

� kBC
@
�
zC ; V

�
@zA

!
_zB +

+kBC
�
zB; V

� @ �zC ; V �
@zA

= 0: (28)

Theorem 3 proves the existence of a Lagrangian formulation for the dynamics
of a �rst-order second-class system with the following properties: a) it is non-
degenerate and second-order; b) it is equivalent to the �rst-order formulation
(in terms of the same variables) at the level of the solutions to the equations
of motion subject to some mutually compatible initial conditions. We remark
that the previous theorem holds under some more relaxed conditions than
those of Theorem 1 (matrix kAB is no longer restricted to satisfy conditions
(7)).
Along the same line like in the �nite-dimensional case, we arrive at the

following theorem.
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Theorem 4 For any �rst-order Lagrangian L0
�
QA; @�Q

A
�
= �A (Q) _Q

A �
V
�
QA; @iQ

A
�
with non-degenerate symplectic two-form, there exists a second-

order Lagrangian L̂0
�
QA; @�Q

A
�
= 1

2
�AB

�
_QA �

�
QA; V

�� �
_QB �

�
QB; V

��
such that

�
�L0
�QA

= 0;

QA (t0;x) = QA 0 (x) ;
,

8><>:
�L̂0
�QA

= 0;

QA (t0;x) = QA 0 (x) ;
_QA (t0;x) =

�
QA (x) ; V (x0)

���
QA 0(x)

;

(29)
where �AB is a constant, symmetric, and invertible matrix.

Theorem 4 extends the result of Theorem 3 to �eld theories.
Examples
E1) For the Schrödinger Lagrangian with a time-independent potential,

the second-order Lagrangian L̂0 takes the form

L̂0 = �~H1H2; � = cons tan t; (30)

with

HA � _QA � (�)
A

i~

�
~2

2m
@i@i � U (x)

�
QA; QA = ( ;  �) ; A = 1; 2: (31)

E2) For the Dirac �eld, the Lagrangian L̂0 reads as

L̂0 = �
�
@�� a@

� a +m2� a 
a � 2im� a (�)

a
b @� 

b
�
; � = cons tan t: (32)

By direct computation we �nd that the relationship between the functions
EA and ÊA (see equations (9) and (28)) is given by

ÊA + kABE
B �

 
kAC

@
�
zC ; V

�
@zB

� kBC
@
�
zC ; V

�
@zA

!
HB = 0; (33)

where the matrix kAB from (33) is constant, symmetric, and invertible and,
moreover, ful�lls no additional requirements. Formulas (33) toghether with
the previous results lead to equivalence8<:

ÊA = 0;
zA (t0) = zA0 ;

_zA (t0) =
�
zA; V

���
zA0
;
,

8<:
EA = 0;

zA (t0) = zA0 ;
_zA (t0) =

�
zA; V

���
zA0
;
; (34)
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that puts on equal footing the equations

EA � �zA �
��
zA; V

�
; V
�
= 0; (35)

ÊA � �kAB�zB +
 
kAC

@
�
zC ; V

�
@zB

� kBC
@
�
zC ; V

�
@zA

!
_zB +

+kBC
�
zB; V

� @ �zC ; V �
@zA

= 0; (36)

in the presence of the initial conditions

zA (t0) = zA0 ; _z
A (t0) =

�
zA; V

���
zA0
: (37)

A similar equivalence is enabled in the case of �eld theories.

3 Conclusion

The main conclusion of this thesis can be synyhesized into: a) �rst-order
second-class systems endowed with a non-degenerate symplectic 2-form allow
(from the classical dynamics viewpoint) for a non-degenerate second-order
Lagrangian formulation that is equivalent to the �rst-order formulation (in
terms of the same variables) at the level of the solutions to the equations of
motion subject to some mutually compatible initial conditions; b) the number
of physical degrees of freedom associated with the second-order formulation
is twice the similar number corresponding to the linear formulation.
As a consequence, although the solutions to the Cauchy problems related

to the two formulations coincide, this is no longer valid with respect to their
number of physical degrees of freedom.
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