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Abstract 

The aim of this thesis is to carry out Bayesian variable selection and coefficients 

estimation in Tobit quantile regression model via new proposed methods.  

In Chapter 2, a new formulation for Bayesian Lasso QReg has been proposed by 

employing the scale mixture of uniform distributions formulation. Then, a fully Bayesian 

treatment that leads to a simple and efficient Gibbs sampling algorithm with tractable full 

conditional posterior distributions has been developed. The superiority of the proposed 

approach (Lasso U) has been shown on simulation study and real data. Some extensions to 

this approach are discussed in Tobit quantile regression.   

In Chapter 3, a new Bayesian Lasso Tobit quantile regression method for variable 

selection and coefficients estimation assigning an independent scale-mixture of uniform 

(SMU) distributions for the regression coefficients has been proposed. Then, a simple and 

efficient (Markov Chain Monte Carlo) MCMC algorithm has been presented for Bayesian 

sampler. Simulation studies and a real data set were used to investigate the performance of the 

proposed method. Both simulated and real data examples show that the proposed method 

performs quite well compared to the other methods in a variety of scenarios.       

In Chapter 4, a simple and efficient MCMC for composite Tobit quantile regression 

model based on a mixture of an exponential and a scaled normal distribution of the skewed 

Laplace distribution has been developed. Simulation studies show that the proposed method is 

effective in coefficient estimation with different distributions. Based on the simulation studies 

and real data analysis, we argue that it is necessary to combine quantile information based on 

estimators at different quantiles to achieve efficiency gain.  

In Chapter 5, Bayesian Tobit quantile regression model, and Bayesian composite Tobit 

quantile model have been used to analyse the Iraqi banks' investments data in two ways. 

Firstly, coefficients estimation via thirty Tobit quantile levels. Secondly, variable selection 

through determining the relative importance for independent variables in our model, via thirty 

Tobit quantile levels. On the other hand, the Bayesian composite Tobit quantile model 

approach is used via a groups of six composite Tobit quantile levels, also in two ways. Firstly: 

for modelling the relationship between Iraqi banks' investments and nine independent 

variables. Secondly: variable selection via a groups of six composite Tobit quantile levels. A 

set of conclusions has been derived from theoretical and application viewpoints. 
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Rezumat 

Scopul acestei teze este de a efectua selecţia Bayesiană a variabilelor și estimarea 

coeficienților în modelul de regresie cuantilică Tobit prin intermediul unor noi metode 

propuse. În capitolul 2, a fost propusă o nouă formulare pentru regresia cuantilică (Qreg) 

Bayesiană prin utilizarea unei formulări bazat pe o mixtură scalată de distribuţii uniforme. 

Apoi, a fost dezvoltată o abordare Bayesiană completă care conduce la un algoritm simplu și 

eficient de eșantionare Gibbs cu distribuții aposteriori condiționate uşor de manevrat. 

Superioritatea abordării propuse (Lasso U) a fost demonstrată prin simulare și pe date reale. 

Unele extensii la această abordare sunt discutate în regresia cuantilică Tobit. 

În capitolul 3, a fost propusă o nouă metodă de regresie cuantilică Tobit Lasso 

Bayesiană pentru selecția variabilelor și estimarea coeficienților care asignează o mixtură 

scalată independentă de distribuții uniforme (SMU) pentru coeficienții de regresie. Apoi, a 

fost prezentat un algoritm MCMC (Markov Chain Monte Carlo) simplu și eficient pentru 

eşantionatorul Bayesian. Atât studii bazate pe simulare cât și un set real de date au fost 

utilizate pentru a investiga performanța metodei propuse. Ambele arată că metoda propusă se 

comportă destul de bine în comparație cu celelalte metode într-o varietate de scenarii.   

În capitolul 4, a fost elaborat un MCMC simplu și eficient pentru modelul de regresie 

cuantilică Tobit compozit, bazat pe o mixtură între o distribuție exponențială şi una normală 

scalată a distribuției Laplace asimetrice. Studiile de simulare arată că metoda propusă este 

eficientă în estimarea coeficienților cu distribuții diferite. Pe baza studiilor de simulare și a 

analizei datelor reale, susținem că este necesar să combinăm informațiile bazate pe estimatori 

la diferitele cuantilice pentru a obține un câștig de eficiență.  

În capitolul 5, modelul Bayresian Tobit de regresie cuantilică și modelul Bayesian 

Tobit cuantilic compozit au fost folosite pentru a analiza datele privind investițiile băncilor 

irakiene, în două moduri. În primul rând, estimarea coeficienților prin treizeci de nivele 

cuantile Tobit. În al doilea rând, selectarea variabilelor prin determinarea importanței relative 

a variabilelor independente din modelul nostru, prin intermediul a treizeci de nivele cuantile 

Tobit. Pe de altă parte, abordarea bazată pe modelul Bayesian compozit cuantilic Tobit este 

utilizată prin intermediul a șase grupuri de nivele cuantilice compozite Tobit, de asemenea în 

două moduri. În primul rând: pentru modelarea relației dintre investițiile băncilor irakiene și 

nouă variabile independente. În al doilea rând: pentru selecția variabilelor prin un grup de șase 

nivele cuantilice compozite Tobit. Un set de concluzii a fost dedus din punct de vedere 

teoretic și aplicativ. 

Cuvinte cheie: 

 regresie Tobit                                                             

 regresie cuantilă 

 regresie Tobit cuantilică 

 Estimarea coeficienților  

 Selecția variabilelor  

 Abordare Bayesiană  

 Eșantionare Gibbs  
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1. Introduction 

 

Modelling the relationship between the averages of a response variable (dependent variable) 

Y with the set of covariates X is not always convenient. In many application studies mean 

regression may be not appropriate to describe the behaviour of response variable (outcome 

variable) Y with the covariates X. For example, the effect of demographic properties and 

maternal conduct on the weight of infant born was studied by (Abrevaya, J., & Dahl, C. M. 

(2008))[6] in the United States. This study was focused on low birth weight for infants, which 

causes many health problems. This data was analysed by standard mean regression; the 

conditional mean was not an attractive approach for low tail distribution. Quantile regression 

(Q Reg) was proposed by (Koenker and Bassett (1978))[38] as an extension for standard 

mean regression in different conditional quantiles of a dependent variable.  

Quantile regression model is capable of providing complete information about different 

quantiles of the stochastic relationships between dependent and predictors variables. Recently, 

Q Reg model has received much interest in theoretical and application studies. Q Reg model 

is applied in different fields such as: Microarray study (Wang and He, (2007))[69], 

agricultural economics (Kostov and Davidova, 2013)[41], ecological studies (Cade and Noon, 

(2003))[14], body mass index (Yu et al., 2013))[74], growth chart (Wei et al., (2006))[68], 

and so on ''Fadel Hamid Hadi Alhusseini, 2017''[24]. The quantile regression models have 

good properties compared with other regression models. The Q Reg model belongs to a robust 

models family (Koenker and Geling, (2001))[43]. Quantile regression model does not require 

any assumption about the residual distribution providing greater statistical efficiency than 

other regression models when the error is non-normal ''Fadel Hamid Hadi Alhusseini, 

2017''[24]. Also, Q Reg model is robust against the economic problems. All these features 

made the Q Reg model of an important model in various application fields. The following 

mathematical formula belongs to Q Reg model. 

𝑦𝑖 = 𝑥𝑖
𝑇𝛽𝜃 + 𝜀𝑖,               𝜃 ∈ (0,1),                                                                                      [1 ]    

For  any 𝜃th quantile, (0 < 𝜃 < 1) , the  𝜃th quantile regression can be denoted as 

𝑄𝑦𝑖|𝑥𝑖(𝜃) = 𝑥′𝑖𝛽𝜃 , where 𝑦𝑖 is the response (dependent) variable, 𝑥𝑖
𝑇 is a k-dimensional 

vector of covariates (independent variables),  𝛽𝜃  is a  coefficients vector of Q Reg model.  

There is an infinite number of points which belong to (0 < 𝜃 < 1). So, there are infinite 

quantile levels; at each quantile levels the Q Reg model has been estimated.  Therefore, the Q 

Reg model has a high flexibility and capability of providing a perfect information about the 

relationships between response variable and predictor variables at different quantile levels, 

unlike classical regression model in which only one regression line is estimated by 

conditional mean of the response variable (𝑦) given 𝑥, 𝐸 (𝑦|𝑥). (Koenker and Hillock, 

2001))[40]. This is shown in the two following figures:  

 

 
  

 

Figure 1: Regression lines which are estimated via classical regression model and Q Reg 

model. 
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The left figure shows the estimated regression line by classical regression model. Sometimes, 

the classical regression model cannot give us complete information about the relationship 

between the dependent variable and covariates (independent variables). The right figure 

shows four quantile regression lines estimated at four quantile levels. Always, the Q Reg 

model give us an obvious picture about the relationship between a response variable and 

covariates (explanatory variables), because many quantile regression lines are estimated. Each 

line belongs to a specific quantile level. The discussed matter focuses on the properties of Q 

Reg model. Another important matter in building the Q Reg model is the selection of active 

covariates. In recent years, the selection of important subsets of covariates has taken a lot of 

attention in the literature. Many methods of variable selection have been proposed, such as 

Lasso (Tibshirani, (1996))[64], SCAD (Fan and Li, (2001))[20], the elastic net method (Zou 

and Hastie, (2005))[75], adaptive Lasso (Zou, (2006))[]. Variables selection techniques are 

used also in Q Reg model, such as Lasso penalty, which was applied to the mixed-effect Q 

Reg model or longitudinal data by (Koenker (2004))[39], a solution path was introduced by 

(Li and Zhu (2008))[53] to 𝐿1-penalized quantile regression model. To estimate the 

coefficients of Lasso Q Reg model (Li and Zhu (2008))[53] proposed the following equation. 

   ∑𝜌𝜃(𝑦𝑖 − 𝑥𝑖
𝑇𝛽𝜃)

𝒏

𝒊=𝟏

𝛽𝜃
𝑚𝑖𝑛 + 𝜆 ∥ 𝛽𝜃 ∥ ,                                                                                      [2] 

where 𝜌𝜃(𝑠) is the check(loss) function defined by 𝜌𝜃(𝑠) = 𝑠{𝜃 − Ι(𝑠 ≤ 0)}, 𝑎𝑛𝑑 where 

𝐼(𝑠 < 0) is the indicator function and 𝜆( (𝜆 ≥ 0) is the shrinkage parameter. Unfortunately, 

the equation (2) is not differentiable at zero, hence there is no exact solution for equation (2). 

(Koenker, (2005))[42] shows the minimization of (2) can be achieved by a linear 

programming algorithm (Koenker and D’Orey, (1987))[46]. 

Also to estimate the coefficients of Lasso Q Reg model the Bayesian approach is used. (Park 

and Casella (2008))[60] proposed the Bayesian Lasso in classical linear regression models via 

using a scale mixture of normal (SMN) prior distributions on the regression coefficients and 

independent exponential prior distributions on their variances ''Fadel Hamid Hadi 

Alhusseini,2017''[24]. (Li et al, (2010))[52] suggested Bayesian Lasso Q Reg, also by using 

(SMN) prior distributions on the regression coefficients and independent exponential prior 

distributions on their variances. (Li et al, (2010))[52] proposed an efficient and simple 

Markov chain Monte Carlo (MCMC) algorithm for updating all model coefficients from 

posterior distribution. The Bayesian formulation is a flexible procedure of estimating the 

penalty parameter along with regression coefficients. Recently, for linear regression, (Mallick 

and Yi (2014))[55] provided a different process of Lasso-based model by using the scale 

mixture of uniform (SMU) as formulation of the Laplace density function. (Mallick and Yi 

(2014))[55] provided a new method to coefficients estimation and variable selection in 

classical regression model. This method performed quite well compared to some other 

existing methods in the same field. 

Our contribution consists in a new formulation for Bayesian Lasso Q Reg by employing SMU 

formulation as a new prior distribution to coefficients of Q Reg model. We also developed a 

full Bayesian treatment which led to an efficient and simple Gibbs sampling algorithm with 

tractable full conditional posterior distributions. The full conditional posterior distributions of 

our Gibbs sampling algorithm were collected in two steps. Firstly the likelihood function 

which belongs to the asymmetric Laplace distribution (ALD) family, see (Yu and Moyeed 

(2001))[]. Here, we cannot use ALD directly because it would lead to hard accounts and 

inefficient Gibbs sampling algorithm. Therefore, we used alternative formula of ALD, 

proposed by (Kozumi and Kobayashi, (2011))[49] which is a scale mixture of normal 

distributions ( SMN) ''Fadel Hamid Hadi Alhusseini''[24]. The response variable ( 𝑦𝑖) is 
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distributed through normal distribution with mean (𝑥𝑖
𝑇𝛽𝜃 + (1 − 2θ)𝑚𝑖  ) and variance ( 

2𝜎−1𝑚𝑖 ) as ~N(𝑥𝑖
𝑇𝛽𝜃 + (1 − 2θ)𝑚𝑖, 2𝜎

−1𝑚𝑖) :   

𝑓(𝑦|𝑦𝑖, 𝑥𝑖𝛽, 𝜎) =
1

√4𝜋𝜎−1𝑚𝑖

 𝐸𝑥𝑝
−(𝑦𝑖 − 𝑥𝑖

𝑡𝛽 − (1 − 2𝜃)𝑚𝑖)
2

4𝜎−1𝑚𝑖
                                       [3] 

where 𝑚𝑖 is exponential distribution with scale parameter θ(1 − θ)𝜎. The majority of 

researchers in field of Bayesian quantile regression and Bayesian regularized quantile 

regression use the Kozumi and Kobayashi  formulation. It provides a simple and efficient 

MCMC algorithm. 

It is our contribution to put SMU prior distributions on 𝛽𝑗 and exponential prior distributions 

assigned to 𝜎2 , assuming they are independent. We developed an alternative hierarchical 

Bayesian Lasso Q Reg. According to the work of (Mallick and Yi (2014))[55], the Laplace 

prior distribution to 𝛽𝑗 can be given as 

𝜆

2
𝑒{−𝜆|𝛽𝑗|} =

𝜆

2
∫ 𝜆

.

𝑢𝑗>|𝛽𝑗|

 𝑒𝑥𝑝{−𝜆𝑢𝑗} 𝑑𝑢𝑗     , 

= ∫
1

2𝑢𝑗
 
𝜆2

Γ(2)

,

−𝑢𝑗<𝛽𝑗<𝑢𝑗

𝑢𝑗
2−1 𝑒𝑥𝑝{−𝜆𝑢𝑗} 𝑑𝑢𝑗     ,                                                                                [4] 

= ∫  
𝜆2

2

,

−𝑢𝑗<𝛽𝑗<𝑢𝑗
 𝑒𝑥𝑝{−𝜆𝑢𝑗} 𝑑𝑢𝑗       

where  Γ(2) = (2 − 1)! = 1 

The equation (4) considers reformulation of Laplace prior distribution to SMU. This 

procedure provide us comfortable account for our Gibbs sampling and the attractive MCMC 

algorithm. 𝛽𝑗 is uniform distribution with parameters (−𝑢𝑗 , 𝑢𝑗) and  𝑢𝑗   is Gamma distribution 

with shape parameter (2) and rate parameter (𝜆); also the parameter 𝜆  is Gamma distribution 

with shape parameter (c) and rate parameter (d) ''Fadel Hamid Hadi Alhusseini''[24]. From the 

information above, our Bayesian hierarchical model can be formulated as follows: 

        𝑚𝑖|𝜎~𝑒𝑥𝑝{𝜃(1 − 𝜃)𝜎}, 

        𝛽𝑗|𝑢𝑗~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−𝑢𝑗 , 𝑢𝑗), 

        𝑢𝑗|𝜆 ~𝐺𝑎𝑚𝑚𝑎(2, 𝜆) ,                                                                                                                      [5] 

        𝜎 ~𝜎𝑎−1𝑒𝑥𝑝(−𝑏𝜆)                              

        𝜆~𝜆𝑐−1𝑒𝑥𝑝(−𝑑𝜆) . 

Here, 𝐸𝑥𝑝(𝜃(1 − 𝜃)𝜎) refers to the exponential distribution with rate parameter 𝜃(1 − 𝜃)𝜎. 

Also 𝜎 is Gamma distribution with shape parameter (a) and rate parameter (b). Where, a,b,c 

and d are four fixed  hyper parameters. From the likelihood function shown in equation (3) 

and hierarchical model shown in equation (5), we will obtain conditional posterior 

distribution of  𝛽,𝑚, (𝑚1, …𝑚𝑛)
𝑇 , 𝑢 = (𝑢1, … 𝑢𝑛)

𝑇  and 𝜆 can be updated using an efficient 

MCMC-based computation technique.  
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The conditional posterior distribution of 𝛽 is truncated normal, with mean 

(𝜎𝛽𝑗
2 ∑

 𝜎𝑥𝑖𝑗  (𝑦𝑖−(1−2𝜃)𝑚𝑖−∑ 𝑥𝑖𝑗
𝑝
,𝑗≠𝑙 𝛽𝑗)

    

2𝑚𝑖

𝑛
𝑖=1 )  𝐼{|𝛽𝑗| < 𝑢𝑗} and variance (∑

𝜎𝑥𝑖𝑗
2

2𝑚𝑖

𝑛
𝑖=1 )

−1

.  The 

conditional posterior distribution of  𝑚  is inverse Gaussian distribution with mean 
1
√(𝑦𝑖 − 𝑥𝑖

𝑡𝛽)2⁄   and shape parameter (
𝜎

2
). Conditional posterior distribution of 𝑢𝑗  is a left-

truncated exponential distribution given by 𝑢𝑗|𝛽, 𝜆~𝐸𝑥𝑝(𝜆)𝐼{𝑢𝑗 > |𝛽𝑗|}. Conditional 

posterior distribution of the penalty parameter 𝜆 is Gamma distribution with shape parameter 

(𝑐 + 2𝑝) and rate parameter (𝑑 + ∑ |𝛽𝑗|
𝑝
𝑗=1 ). Also the conditional posterior distribution of 𝜎  

is Gamma distribution with shape parameter (𝑎 +
3𝑛

2
 ) and rate parameter 

(∑ (
(𝑦𝑖−𝑥𝑖

𝑡𝛽+(1−2𝜃)𝑚𝑖)
2

4𝑚𝑖
+ 𝜃(1 − 𝜃)𝑚𝑖) + 𝑏

𝑛
𝑖=1 ). From the full conditional posterior 

distributions we proceed to sample each unknown parameter (𝛽 ,𝑚, (𝑚1, …𝑚𝑛)
𝑇 , 𝑢 =

(𝑢1, … 𝑢𝑛)
𝑇  , 𝜆 and 𝜎. We will obtaine a good Gibbs sampler for coefficient estimations and 

variable selection in new Bayesian Lasso quantile regression model.  

In order to evaluate the performance of our proposed method New Bayesian Lasso quantile 

regression (LassoU) it is compared with three other methods (LassoN, rq and 

MCMCquantreg) via the simulation approaches and real data, where the simulation 

approaches take the following description: 

 In first simulation, our simulation data are generated from sparse model:  

𝑦𝑖 = 3𝑥1𝑖 + 1𝑥2𝑖 + 2𝑥5𝑖+𝜀𝑖,          [𝑖 = 1,2, … . ,100] 

where  𝑦𝑖 is the response variable, and our true parameters are 𝛽 = (0,3,1,0,0,2,0,0,0). The 

eight covariates (𝑥1𝑖, 𝑥2𝑖 , 𝑥3𝑖 , 𝑥4𝑖, 𝑥5𝑖, 𝑥6𝑖 , 𝑥7𝑖 , 𝑥8𝑖) are simulated from a multivariate normal 

with mean 0 and 𝑐𝑜𝑣(𝑥ℎ, 𝑥𝑔) = 0.5
|ℎ−𝑔|. The random error distributions (𝜀𝑖) are generated 

from a 𝜒(3)
2  distribution with three degrees of freedom, a 𝑡(3) Distribution with three degrees 

of freedom and normal distribution with 𝑚𝑒𝑎𝑛 (𝜇)and variance (9), 𝜀𝑖~𝑁(𝜇, 9). The 

methods under testing are evaluated by the median of mean absolute deviations 

(MMAD),where MMAD = 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑚𝑒𝑎𝑛(|𝑥𝑇�̂� − 𝑥𝑇𝛽𝑡𝑟𝑢𝑒|)), and the standard deviations 

(SDs). In first simulation study and under three choice of the error distribution, our algorithm 

was run for 11000 iterations and the first 1000 were removed. The results were as follows : 

the performance of our propose method New Bayesian Lasso Q Reg  (LassoU) appears very 

good compared with Bayesian and non-Bayesian methods (LassoN, rq and MCMCquantreg).  

In general, the MMAD generated by New Bayesian Lasso Q Reg is much smaller than the 

MMAD generated by other three methods (LassoN, rq and MCMCquantreg), at all quantile 

levels and  all distributions under consideration. Also, in the first simulation study with 

different error distributions, the SD obtained from our proposed method is much smaller than 

the SD obtained from other approaches (LassoN, rq and MCMCquantreg). Our MCMC 

algorithm is very stable and this is clear from the coefficients of multivariate potential scale 

reduction factor (MPSRF).Where, MPSRF is stable and close to 1 after about 2000 iterations. 

This shows that the convergence of the full conditional posterior distribution for the proposed 

method was quick and the mixing was good. 

In the second simulation, our simulation data are generated from sparse model: 

𝑦𝑖 = 3𝑥1𝑖 + 𝜀𝑖,               [𝑖 = 1,2, … . ,100] 
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where the true parameters are 𝛽 = (0,3,1,0,0,2,0,0,0)𝑇. Like in first simulation, 8 covariates 

(𝑥1𝑖 , 𝑥2𝑖, 𝑥3𝑖, 𝑥4𝑖 , 𝑥5𝑖 , 𝑥6𝑖 , 𝑥7𝑖 , 𝑥8𝑖) are simulated from a multivariate normal with mean 0 and 

𝑐𝑜𝑣(𝑥ℎ, 𝑥𝑔) = 0.5
|ℎ−𝑔|.  The MMAD  is computed by (LassoU) which is much smaller than 

MMAD which is computed by Bayesian and non-Bayesian methods (LassoN, rq and 

MCMCquantreg), via three quantile levels and three different error distributions. Also the 

results of the SD is computed by our proposed method (LassoU), which is smaller than 

MMAD computed by other three methods. From the results of the second simulation, we 

conclude our proposed method (LassoU) has a good performance compared with Bayesian 

and non-Bayesian (LassoN, rq and MCMCquantreg).  

 In the third simulation, our simulation data are generated from dense model:  

𝑦𝑖 = 𝑥𝑖𝑗
𝑇𝛽𝜃 + 𝜀𝑖 ,               [𝑖 = 1,2, … . ,100, 𝑗 = 1,… ,8]     

where 𝛽 = (0.00,0.85, ,0.85, ,0.85, ,0.85, ,0.85, ,0.85, ,0.85, ,0.85)𝑇. Like in first and second 

simulations, eight covariates (𝑥1𝑖, 𝑥2𝑖 , 𝑥3𝑖 , 𝑥4𝑖 , 𝑥5𝑖, 𝑥6𝑖, 𝑥7𝑖 , 𝑥8𝑖) are simulated from a 

multivariate normal with mean 0 and 𝑐𝑜𝑣(𝑥ℎ, 𝑥𝑔) = 0.5
|ℎ−𝑔|. The MMAD and SD are 

computed by (LassoU) and are much smaller than MMAD that is computed by Bayesian and 

non-Bayesian methods (LassoN, rq and MCMCquantreg), via three quantile levels and three 

different error distributions. From the results of third simulation, we conclude that also our 

proposed method (LassoU) has a better performance compared with Bayesian and non-

Bayesian (LassoN, rq and MCMCquantreg). 

Also, from the three simulation results, our proposed method (LassoU) has smallest MMADs 

and SD compared with three other methods. Therefore, our proposed method has higher 

accuracy than the other methods in coefficients estimation and variable selection.  

Also for evaluating our proposed method, we could use the estimation of 𝛽 in direct way. We 

only choose the case of the random error, 𝜀𝑖~𝑁(𝜇, 9), at three different quantile levels (𝜃1 =
0.50, 𝜃2 = 0.75, and 𝜃3 = 0.95 ). The estimates of 𝛽  by our proposed method, a new 

Bayesian Lasso Q Reg (LassoU) is very close to the true parameter values, compared with 

other methods such as LassoN, rq and MCMCquantreg. In general, LassoU performs well in 

estimating the regression coefficients compared with Bayesian and non-Bayesian methods 

(LassoN, rq and MCMCquantreg). Our simulation scenarios show that the Lasso U is 

effective in variable selection and coefficient estimation in quantile regression model. The 

simulations studies also indicate that our proposed method (Lasso U) is robust when the 

distribution which belongs to the error term is not ALD "Fadel Hamid Hadi Alhusseini 

,2017''[24].   

 

Our proposed method is assessed with real data. For this purpose, we used air Pollution Data 

which contains response variable in the log (concentration of NO2 per hour), and seven 

covariates - 𝑥1 (log (number of cars per hour)), 𝑥2 (temperature), 𝑥3 (wind speed in meters per 

second), 𝑥4 (the temperature difference), 𝑥5 (wind direction), 𝑥6 (time of day in hours) and 𝑥7 

day number. For evaluating the performance our LassoU method, we compared it with three 

other methods (LassoN, rq and MCMCquantreg).The mean square error (MSE) criterion has 

been used via three quantile levels 𝜃 ∈ {0.50,0.75,0.95}. Generally, the (MSE) and SD 

computed by our proposed new Bayesian Lasso Q Reg were smaller than (MSE) computed by 

three other methods (LassoN, rq and MCMCquantreg) in majority of quantile levels.  

Therefore, our proposed method new Bayesian Lasso Q Reg has a better performance 

compared with Bayesian and non-Bayesian methods (LassoN, rq and MCMCquantreg). From 

both the simulation and real data scenarios, our proposed method a new Bayesian Lasso 
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quantile Q Reg can be considered quite a new extension to coefficients estimation and 

variable selection in Q Reg model.   

We also proposed a new contribution to coefficients estimation and variable selection in Tobit 

quantile regression (Tobit Q Reg) model. Since the Tobit regression model was proposed by 

(Tobin, (1958))[66], it became known in a variety of scientific fields (Greene, W (2010))[31], 

like in economic sciences, medical sciences, financial sciences, social sciences and 

engineering sciences. Tobit regression models offer limited information on the response 

variable. Therefore, at censored point equal to zero (𝑐 = 0), the Tobit regression model  is 

defined as: 

  

𝑦𝑖 = {
𝑇𝑖
∗ = 𝛼 + 𝛽𝑥𝑖

𝑇 + 𝜀𝑖         𝑖𝑓 𝑇𝑖
∗ > 0

             
0                                       𝑖𝑓 𝑇𝑖

∗ ≤ 0  
                                                                                    [6]   

where 𝜀𝑖~𝑁(0, 𝜎
2), [𝑖 = 1,2, … . . , 𝑛] 

 

𝑦𝑖 is the censored response variable limited at the censored point equal to 0. 𝑇𝑖
∗ is the latent 

variable, 𝑥𝑖
𝑇 is 1×𝑘 a vector of the explanatory variables (covariates), 𝛼 is the intercept term,  

𝛽 is the vector of unknown parameters in the Tobit regression model and 𝜀𝑖 is a random error 

term distributed according to the normal distribution with mean zero and variance (𝜎2). 

Therefore, the latent variable 𝑇𝑖
∗ is distributed normally with the mean (𝛼 + 𝛽𝑥𝑖) and the 

variance(𝜎2), where 𝑇𝑖
∗~𝑁(𝛼 + 𝛽𝑥𝑖 , 𝜎

2).  From the equation (6), the Tobit regression model 

is formed from two parts. First, when the latent variable 𝑇𝑖
∗ is observed, i.e.,  𝑇𝑖

∗ > 0 , the 

probability density function (pdf) of latent variable 𝑇𝑖
∗ belongs to observed (non-limited 

observation) latent variable, where 𝑦𝑖 = 𝑇𝑖
∗   𝑖𝑓 𝑇𝑖

∗ > 0  and it is:  

𝑓(𝑦𝑖) =
1

√2𝜋𝜎2
  𝑒

−(𝑦𝑖−𝛼+𝑥𝑖
𝑇𝛽)

2

2𝜎2
     
                                                                                                    [7]  

  

The equation (1.7) can be reformulated as in equation (8)  

𝑓(𝑦𝑖) =
1

𝜎
𝜙 (
𝑦𝑖 − (𝛼 + 𝑥𝑖

𝑇𝛽)

𝜎
)                                                                                                        [8] 

where 𝜙(. ) is a probability density function (pdf) which is belong to observed latent variable.  

The second part is dedicated to unobserved latent variable (𝑇𝑖
∗) when 𝑇𝑖

∗ ≤ 0, So, it will take 

the cumulative distribution function of the normal distribution. 𝑝𝑟𝑜(𝑦𝑖 = 0)   𝑖𝑓    𝑝𝑟𝑜(𝑇𝑖
∗ ≤

0) ⟶ Φ(
𝑦𝑖−(𝛼+𝑥𝑖

𝑇𝛽)

𝜎
) = Φ(

0−(𝛼+𝑥𝑖
𝑇𝛽)

𝜎
) 

=  Φ(
−(𝛼+𝑥𝑖

𝑇𝛽)

𝜎
) = 1 − Φ(

(𝛼+𝑥𝑖
𝑇𝛽)

𝜎
)                                                                        [9] 

 Φ(. ) is a cumulative distribution function (cdf) (Greene,W(1999))[30]. 

The Tobit regression model is a mixed function between probability density function and 

cumulative distribution function of the normal distribution. Tobit regression model is a good 

statistical tool for modelling the relationship between censored response variables and a set of 

explanatory variables (covariates). But the Tobit regression model is very sensitive to 

regression problems. The Tobit regression model is not sufficient when the data contains 

outlier values. Also, Tobit regression model cannot provide good estimators when the normal 

assumptions are not achieved. To avoid these hard matters, Tobit quantile regression (Tobit Q 

Reg) model proposed by (Powell (1986))[59] has several properties. The Tobit Q Reg 

analyses the entire conditional distributional features of the dependent (response) variable. 

Tobit quantile regression model is focused on a set of quantile functions at different quantile 

levels. Therefore, it has flexibility and ability to give us a complete picture of the full 

distribution of the relationship between the response variable and explanatory variables. Tobit 
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Q Reg model is a normal extension to the classical Tobit regression model. Tobit Q Reg 

model has attractive properties which make it an important model for describing the 

relationship between censored response variable and a set of explanatory variables. The 

mathematical formulation of Tobit Q Reg model can be written as: 

𝑦𝑖 = {
𝑇𝑖
∗ = 𝛼𝜃 + 𝑥𝑖

𝑇𝛽𝜃 + 𝜀𝑖         𝑖𝑓 𝑇𝑖
∗ > 0

             
0                                       𝑖𝑓 𝑇𝑖

∗ ≤ 0  
                                                                                  [10]   

Where 𝜃  is (0 < 𝜃 < 1). The Tobit Q Reg model can have another mathematical 

formulation: 

𝑦 = max(𝐶, 𝑇𝑖
∗),      𝑤ℎ𝑒𝑟𝑒 𝑇𝑖

∗ = 𝛼𝜃 + 𝑥𝑖
𝑇𝛽𝜃 + 𝜀𝑖       𝑎𝑛𝑑 𝐶 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑧𝑒𝑟𝑜 . 

where 𝑇𝑖
∗ is latent response variable, (𝛼𝜃, 𝛽𝜃) are intercept and unknown parameters of the 

Tobit quantile regression respectively, 𝜃 ∈ (0,1). For coefficients estimation in Tobit Q Reg 

minimized the following loss function: 

= ∑𝜌𝜃

𝑛

𝑖=1

𝛼𝜃,𝛽𝜃
𝑚𝑖𝑛 (𝑦𝑖 −𝑚𝑎𝑥{0, 𝑇𝑖

∗})                                                                                                     [11] 

where 𝜌𝜃(𝜀) is called check function of (Koenker and Bassett (1978))[38] at a quantile 𝜃, the 

equation (11) also is not differentiable at 0. But minimization of equation [11] can be resolved 

by a linear programming algorithm (Koenker and D’Orey, (1987))[46] to give us coefficients 

estimation of Tobit Q Reg model. Although asymptotic properties for Tobit Q Reg are studied 

and many algorithms are proposed, the majority of these algorithms are inefficient, when the 

response variable has too much censored data. Presently, a possible estimation of coefficients 

of Tobit Q Reg model by (crq) function exists in the package (quanTobit Req) (Koenker, 

(2011))[45]. Recently, (Yu and Stander, (2007))[] have proposed a Bayesian approach to 

coefficients estimation of Tobit Q Reg, even when there is much censored Data. In recent 

years, selection of important subset of explanatory variables has taken a lot of attention in the 

literature for coefficients estimation with Tobit Q Reg Lasso penalty as follows: 

= ∑ 𝜌𝜃
𝑛
𝑖=1𝛼𝜃,𝛽𝜃

𝑚𝑖𝑛 (𝑦𝑖 −𝑚𝑎𝑥{0, 𝛼𝜃 + 𝑥𝑖
𝑇𝛽𝜃 + 𝜀𝑖}) + 𝜆 ∥ 𝛽𝜃 ∥                                              [12]  

where ( 𝛼𝜃, 𝛽𝜃) are intercept term and unknown parameters vector respectively, and 𝜆 ∥ 𝛽𝜃 ∥  
is penalty for the estimation and selection of Tobit quantile coefficients. Also the 

minimization of equation [12] can be resolved by a linear programming algorithm, or by the 

Bayesian penalized model in Tobit Q Reg to achieve coefficients estimation and variable 

selection in Tobit Q Reg models. Bayesian adoptive Lasso model in Tobit quantile regression 

was developed by (Alhamzawi (2013))[4], which in (2014) proposed also the Bayesian 

adaptive elastic net Tobit Q Reg.  

Our contribution consists in the fact that we proposed a new Bayesian Lasso Tobit Q Reg to 

achieve variable selection and coefficients estimation in Tobit quantile regression model by 

using Bayesian approach. Most methods in the field of penalized Bayesian Tobit Q Reg 

assigned scale mixture of normal distribution (SMN) prior to achieving Bayesian Lasso in 

Regression models. (Mallick and Yi, (2014))[55] provided a new technique for achieving 

Bayesian Lasso in traditional regression model by SMU prior, instead of the Laplace density 

function. We developed a new Bayesian Lasso in Tobit Q Reg model via using (SMU) prior 

distribution to Tobit Q Reg model coefficients. Our proposed method generated new 

conditional posterior distributions, which are very important for constructing efficient 

algorithm MCMC. For this proposed method we were inspired from the suggestion of 
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(Konker and Machado (1999))[48] and (Yu and Moyeed (2001))[]. These researchers 

observed the convergence between loss function (10) and skew-Laplace distribution (SLD) 

(asymmetric Laplace distribution). Therefore, the random error term 𝜀𝑖 is distributed as 

asymmetric Laplace distribution with probability density function (pdf), taking the following 

formula: 

𝑓(𝜀𝑖|𝜇, 𝜎, 𝜃) =
𝜃(1 − 𝜃)

𝜎
 exp−𝜌𝜃 {(

𝜀𝑖 − 𝜇

𝜎
)}                                                                               [13] 

When the mean is equal 0, and the variance is equal to 1, then the probability density 

function which relates to random error 𝜀𝑖  is as follows: 

𝑓(𝜀𝑖|𝜎, 𝜃) = 𝜃(1 − 𝜃) exp−𝜌𝜃{(𝜀𝑖)}                                                                                              [14] 

𝜌𝜃(. ) is the check (loss) function. The joint distribution of response variable 𝑦 =
(𝑦1, … , 𝑦𝑛)

𝑇 , 𝑔𝑖𝑣𝑒𝑛 𝑋 = (𝑥1, … , 𝑥𝑛)
𝑇 , is:  

𝑓(𝑦|𝑋, 𝛼, 𝛽, 𝜎, 𝜃) = 𝜃𝑛(1 − 𝜃)𝑛𝑒𝑥𝑝 {−∑𝜌𝜃(𝑦𝑖 −𝑚𝑎𝑥{0, 𝛼𝜃 + 𝑥𝑖
𝑇𝛽𝜃 + 𝜀𝑖}

𝑛

𝑖=1

}                 [15] 

Maximizing the likelihood function of the equation [15] is equivalent to minimizing the 

equation [11]. By using ALD directly this leads to hard computations. Therefore, (Kozumi 

and Kobayashi, (2011))[49] suppose that the ALD can be reformulated in scale mixture 

normal distribution. The likelihood function of equation [14] becomes as follows:  

𝑓(𝑇𝑖
∗|𝛼𝜃, 𝑥𝑖

𝑇 , 𝜃, 𝛽𝜃,𝑚𝑖) = [
1

√4𝜋𝑚𝑖

]

𝑛

𝑒
−∑

(𝑇𝑖
∗−𝛼𝜃−𝑥𝑖

𝑇𝛽𝜃−(1−2𝜃)𝑚𝑖)
2
 

4𝑚𝑖
                             𝑛

1                    [16] 

where 𝑚𝑖 is the experiential distribution density function with rate parameter 𝜃(1 − 𝜃). The 

equation [16] is an important part for building our Gibbs samplers. (Tibshirani, (2011))[65] 

introduces the Laplace prior distribution assigned to Bayesian Lasso framework. Using 

Laplace prior distribution directly leads to hard computation of full conditional posterior 

distributions. Therefore, using simplified formulas to Laplace prior distribution leads to 

simple and efficient MCMC algorithm. There is an alternative SMN formula proposed by 

(Andrews and Mallows, (1974))[5], as follows: 

λj

2
 e−λj|βj| = ∫

1

√2πsj

∞

0

e
(−
βj
2

2sj
)

 
λj
2

2
e
(−

s
jλj
2

2
)

dsj                                                                           [17]   

The equation (17) is a simple formula of Laplace prior distribution with two functions. The 

first function can be assigned to prior distribution for parameters(𝛽𝑗), which take normal 

distribution with mean zero and variance (𝑠𝑗) as follows: 

𝑝(𝛽𝑗|𝑠𝑗) =
1

√2𝜋𝑠𝑗
𝑒𝑥𝑝 {−

𝛽𝑗
2

2𝑠𝑗
}                                                                                                       [18] 

where the unknown variance of  𝛽𝑗 is 𝑠𝑗 . The exponential prior distribution for 𝑠𝑗   takes the 

following form: 

𝑝(𝑠𝑗|𝜆𝑗)  ∝  
𝜆𝑗

2
 𝑒𝑥𝑝 {−

𝑠𝑗𝜆𝑗
2
}                                                                                                         [19]   
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In the end, the scale mixture of normal prior distribution is consider a good alternative for 

Laplace prior distribution. This give us a simple computations to full conditional posterior 

distributions. This is why most researchers used SMN prior distribution in Bayesian penalized 

regression models. For instance, (Park and Casella, (2008))[60] presented the Bayesian Lasso 

in traditional regression model. These methods were extended to Tobit quantile regression. 

For instance (Alhamzawi, (2013))[4] proposed adaptive Lasso in Tobit quantile regression by 

using the Bayesian technique. Also (Alhamzawi and Yu, (2014))[2], suggested a Bayesian 

technique for coefficient estimation in Tobit Q Reg model, by utilizing g-prior distribution 

with ridge parameter. Also, (Alhamzawi, (2014))[2] proposed a Bayesian elastic net penalty 

in Tobit Q Reg. In our proposed method, we used SMU prior distribution as alternative 

formula about Laplace prior distribution for coefficients in our model: 

𝜆

2
𝑒{−𝜆|𝛽𝑗|} = ∫

1

2𝑢𝑗
 
𝜆2

Γ(2)

∞

𝑠𝑗>|𝛽𝑗|

  𝑢𝑗
2−1 𝑒𝑥𝑝{−𝜆𝑢𝑗} 𝑑𝑢𝑗    ,    

= ∫
1

2𝑢𝑗
 
𝜆2

Γ(2)

∞

|𝛽𝑗|
  𝑢𝑗

2−1 𝑒𝑥𝑝{−𝜆𝑢𝑗} 𝑑𝑢𝑗                                                                         [20] 

The equation (20) has two functions. The first function is assigned to uniform prior 

distribution for 𝑢𝑗 , and the second function is assigned to Gamma prior distribution with 

shape parameter (2) and scale parameter (𝜆). The scale parameter (𝜆) has Gamma prior 

distribution with parameters (𝑎, 𝑏). This parameter is necessary for coefficients shrinkage to 

close from zero. The prior distribution of 𝛼𝜃 is assigned to standard uniform prior 

distribution. The parameters a, 𝑏, are fixed hyper parameters which take initial values. 

 Therefore, our Bayesian hierarchical approach with SMU for our model parameters will be as 

follows: 

  𝑦𝑖=𝑚𝑎𝑥{0,𝑇𝑖
∗} ,             𝑖=1,….,𝑛,, 

𝑇𝑖
∗|𝛼𝜃, 𝛽𝜃, 𝑧𝑖~𝑁(𝛼𝜃 + 𝑥𝑖

𝑇𝛽𝜃 + (1 − 2𝜃)𝑚𝑖, 2𝑚𝑖), 

𝑝(𝛼𝜃) ∝ 1, 

𝑚𝑖~𝐸𝑥𝑝 (𝜃(1 − 𝜃)),                                                                                                             [21] 

𝛽𝑗|𝑢𝑗~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−𝑢𝑗 , 𝑢𝑗), 

𝑢𝑗|𝜆 ~𝑢𝑗
2−1exp (−𝜆𝑢𝑗), 

𝜆~𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏), 

The Bayesian hierarchy in equation (21) is an important part to generate our Gibbs sampler. 

The first part is dedicated to  the likelihood function as in equation (21) and the second part 

will be shown in Bayesian hierarchy in equation (21) , where we will obtain our conditional 

posterior distributions which are output from mathematical formula as follows: 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟  𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 ∝ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ×  𝑝𝑟𝑖𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

Under the hierarchy of Bayesian models (21) and (16), the Gibbs sampler algorithm is used to 

sample and update the parameters. The full conditional posterior distributions for our 

proposed method will be as follows: 
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The conditional posterior distribution of variable (𝑇𝑖
∗) follows the truncated normal 

distribution which is given by: 

𝑇𝑖
∗|𝑦𝑖, 𝑥𝑖 , 𝑚𝑖, 𝛼𝜃, 𝛽𝜃~{

𝛾(𝑦𝑖)                                                  𝑖𝑓 𝑦𝑖  > 𝑜                                           [22]

𝑁(𝛼𝜃 + 𝑥𝑖
𝑇𝛽𝜃 + (1 − 2𝜃)𝑚𝑖 , 2𝑚𝑖)𝐼(𝑇𝑖

∗ ≤ 0)               otherwise              
 

where 𝛾(𝑦𝑖) is degenerate distribution. The full conditional posterior distribution of 𝛼𝜃  is 

normal distribution with mean equal to (∑
(𝑇𝑖
∗−𝑥𝑖

𝑇𝛽𝜃−(1−2𝜃)𝑚𝑖)

2𝑚𝑖

𝑛
𝑖=1 ) and variance equal to 

(∑ (
1

2𝑚𝑖
)𝑛

𝑖=1 ). Also, the full conditional posterior distribution of 𝑚𝑖 is inverse Gaussian with 

mean √
𝟏

(𝑇𝑖
∗−𝛼𝜃−𝑥𝑖

𝑇𝛽𝜃)
𝟐  and shape parameter (

𝟏

𝟐
). And the full conditional posterior distribution 

of 𝛽𝑗 is truncated normal with mean 𝜎2́ ∑
 𝑥𝑖𝑗(𝑇𝑖

∗−(1−2𝜃)𝑚𝑖−∑ 𝑥𝑖𝑗
𝑝
𝑗=1,𝑗≠𝑘 𝛽𝑗)

2𝑚𝑖

𝑛
1  Ι[|𝛽𝑗| < 𝑢𝑗] and 

variance 𝜎2́ = (∑
𝑥𝑖𝑗

2

2𝑧𝑖

𝑛
1 )

−1

. The full conditional posterior distribution of 𝑢𝑗  is left-truncated 

exponential with rate parameter(𝜆). The full conditional posterior distribution of  𝜆 is a 

Gamma distribution with rate parameter (𝑎 + 2𝑝) and scale parameter(𝑏 + ∑ |𝛽𝑗|
𝑝
𝑗=1 ),  where 

a,b are hyperparameters which take initial values. Our Bayesian hierarchical posteriors will 

generate an attractive MCMC algorithm for our proposed method new Bayesian Lasso Tobit 

quantile regression (New B L Tobit Q Reg) ''Fadel Hamid Hadi Alhusseini'', 2017)[25].  

We tested the performance of our proposed method through comparing it with two other 

methods. They  are classical Tobit Q Reg method (crq) by using the crq() function employing 

Powell’s approach in( Koenker (2013))[50] and Bayesian adaptive elastic net Tobit Q Reg 

(BAnet) which is reported by (Alhamzawi (2014))[2]. For testing these methods under 

comparison, we will use simulation approach and real data. In simulation approaches, we will 

use two criterions. The first is the Root Mean Square Residual, RMSR(𝛽) =

√
1

𝑆
 ∑ (�̂�𝑘𝑗 − 𝛽𝑗

𝑇𝑟𝑢𝑒)2𝑆
𝑖=1     ,  𝑗 = 1,2, … . . 𝑝     .  where 𝑆  is the number of simulations, �̂�𝑘𝑗 are 

the estimated parameters for 𝑗𝑡ℎ of model parameters in 𝑘𝑡ℎ of iterations and 𝛽𝑗
𝑇𝑟𝑢𝑒

 are true 

parameters (Lawrence and Arthur (1990))[54]. The second criterion we use is standard 

deviation of the MADS. The performance of our proposed method is investigated by 

simulation approaches. The true model used in these simulations is defined as follows: 

𝑦 = max(𝐶, 𝑇𝑖
∗) , 𝑖 = 1,2, …… . . 𝑛  , 𝑛 = 100, 

𝑤ℎ𝑒𝑟𝑒 𝑇𝑖
∗ = 𝛼𝜃 + 𝑥𝑖

𝑇𝛽𝜃 + 𝜀𝑖,   𝑎𝑛𝑑 𝐶 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑧𝑒𝑟𝑜  . 

𝜃  is Tobit quantile level . In our simulations, we used three Tobit quantile levels are lower 

quantile level at 𝜃1 = 0.30, middle quantile level at 𝜃2 = 0.60 and higher quantile level at 

𝜃3 = 0.90. The error term 𝜀𝑖  , 𝑖 = 1,2… . . 𝑛, is generated from three different distributions: a 

standard normal distribution, a  𝜒(4)
2  distribution with four degrees of freedom and stander 

Laplace distribution 𝑢𝑖~𝐿𝑎𝑝𝑙𝑎𝑐𝑒 (0,1). The number of simulations was 100 for each case. 

Our algorithm was run 13000 iterations. The first 3000 were ruled out as it burnt in. For 

assessing the performance of our proposed method, it was compared with two other methods 

via four simulations approaches. In the first simulation approach, our simulation data was 

generated from very sparse case and with adding the intercept term to the true parameters 𝛽 =
(0,5,0,0,0,0,0,0,1)𝑇. The true model will be as follows: 

𝑦 = max(0, 𝑇𝑖
∗) , 𝑇𝑖

∗ = 0 + 𝑥1𝑖 + 𝑥8𝑖 + 𝜀𝑖,        𝑖 = 1,2, …… . .100   
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We simulated the explanatory variables (𝑥1𝑖, 𝑥2𝑖 , 𝑥3𝑖 , 𝑥4𝑖 , 𝑥5𝑖 , 𝑥6𝑖, 𝑥7𝑖, 𝑥8𝑖) from a multivariate 

Gaussian distribution 𝑋~𝑁8(𝜇, Σ), where 𝜇 is the mean vector 𝜇 𝜖 𝑅𝑛 and Σ is covariance 

matrix with(Σ𝑥)𝑖𝑗 = (2
−1)|𝑖−𝑗|.  Our proposed method (New B L Tobit Q Reg) has the 

smallest RMSR compared with BAnet and crq at different error distributions and different 

Tobit quantile levels. The proposed method has also smaller standard deviation (SD) for 

different error distributions and different quantile levels compared with other two methods. 

This means our proposed (New B L Tobit Q Reg) has a better performance and higher 

accuracy in coefficients estimation and variable selection in Tobit Q Reg model compared 

with other methods.   

In the second simulation approach, our simulation data are generated from dense case and 

with add intercept term to true parameters𝛽 = (0,0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85)𝑇 . 

Therefore, the true model is given as follows: 

𝑦 = max(0, 𝑇𝑖
∗) , 𝑇𝑖

∗ = 0 + 0.85𝑥1𝑖 + 0.85𝑥1𝑖 + 0.85𝑥2𝑖 + 0.85𝑥3𝑖 + 0.85𝑥4𝑖 + 0.85𝑥5𝑖 +
0.85𝑥6𝑖 + 0.85𝑥7𝑖 + 0.85𝑥7𝑖 + 𝜀𝑖,           𝑖 = 1,2, …… . .100   

The explanatory variables (𝑥1𝑖, 𝑥2𝑖 , 𝑥3𝑖 , 𝑥4𝑖 , 𝑥5𝑖 , 𝑥6𝑖, 𝑥7𝑖 , 𝑥8𝑖) are simulated according to a 

multivariate Gaussian distribution 𝑋~𝑁8(𝜇, Σ), where 𝜇 is the mean vector 𝜇 𝜖 𝑅𝑛 and Σ is 

cov-matrix with (Σ𝑥)𝑖𝑗 = (2
−1)|𝑖−𝑗| . In the second simulation we can see that our proposed 

method (New B L Tobit Q Reg) has performance better than Bayesian and non- Bayesian 

methods (BAnet and crq, respectivelly), since the Root Mean Square Residual (RMSR) 

generated by our proposed method (New B L Tobit Q Reg) is very small compared with the 

other two methods at different error distributions. In the third simulation our data are 

simulated from group structures, including the intercept term, and 𝛽 =
(0, (0,0,0), (2,2,2), (0,0,0), (2,2,2), (0,0,0))𝑇. The following true model has been used. 

𝑦 = max(0, 𝑇𝑖
∗) , 𝑇𝑖

∗ = 0 + 2𝑥4𝑖 + 2𝑥5𝑖 + 2𝑥6𝑖 + 2𝑥10𝑖 + 2𝑥11𝑖 + 2𝑥12𝑖 + 𝜀𝑖,    𝑖 =
1,2, …… . .100   

The explanatory variables (𝑥1𝑖, 𝑥2𝑖 , 𝑥3𝑖 , 𝑥4𝑖 , 𝑥5𝑖, 𝑥6𝑖, 𝑥7𝑖 , 𝑥8𝑖,𝑥9𝑖,𝑥10𝑖,𝑥11𝑖,𝑥12𝑖,𝑥13𝑖,𝑥14𝑖,𝑥15𝑖) are 

simulated  from  a multivariate Gaussian distribution 𝑋~𝑁15(𝜇, Σ),where 𝜇 is mean vector 

𝜇 𝜖 𝑅𝑛 and Σ is covariance atrix with (Σ𝑥)𝑖𝑗 = (2
−1)|𝑖−𝑗|.  

From the results which are listed from third simulation, we can see that the performance of 

our proposed method (New B L Tobit Q Reg) is better than Bayesian and non- Bayesian 

methods (BAnet and crq). This is clear from the resulted Root Mean Square Error (RMSR), 

where the RMSR computed by our proposed method is smaller than RMSR computed by the 

two other methods (BAnet and crq) for all quantile levels and all different error distributions.  

Fourth simulation:      

Our simulation data are generated from multi group structures, including the intercept term: 

𝛽 = (0, (0,0,0), (2,2,2), (0,0,0), (2,2,2), (0,0,0), (0,0,0), (2,2,2), (0,0,0), (2,2,2), (0,0,0))𝑇. 

Therefore, the true model will be as follows: 

𝑦 = max(0, 𝑇𝑖
∗) , 𝑇𝑖

∗ = 0 + 2𝑥4𝑖 + 2𝑥5𝑖 + 2𝑥6𝑖 + 2𝑥10𝑖 + 2𝑥11𝑖 + 2𝑥12𝑖 + 2𝑥19 + 2𝑥20𝑖 +
2𝑥21𝑖 + 2𝑥25 + 2𝑥26𝑖 + 2𝑥27𝑖 + 𝜀𝑖,         𝑖 = 1,2, …… . .100   

where the explanatory variables 

 (𝑥1𝑖 , 𝑥2𝑖, 𝑥3𝑖, 𝑥4𝑖 , 𝑥5𝑖 , 𝑥6𝑖 , 𝑥7𝑖 , 𝑥8𝑖,𝑥9𝑖,𝑥10𝑖,𝑥11𝑖,𝑥12𝑖,𝑥13𝑖,𝑥14𝑖,𝑥15𝑖, 𝑥16𝑖 , 𝑥17𝑖, 𝑥18𝑖 , 𝑥19𝑖, 𝑥20𝑖 
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, 𝑥21𝑖 , 𝑥22𝑖 , 𝑥23𝑖,𝑥24𝑖,𝑥25𝑖,𝑥26𝑖,𝑥27𝑖,𝑥28𝑖,𝑥29𝑖,𝑥30𝑖) are simulated of a multivariate Gaussian 

distribution 𝑋~𝑁30(𝜇, Σ),nwhere 𝜇 is mean vector 𝜇 𝜖 𝑅𝑛 and Σ is the covariance matrix with 

(Σ𝑥)𝑖𝑗 = (2
−1)|𝑖−𝑗|. From the computed results from fourth simulation, we can see that our 

proposed method performs better than Bayesian and non- Bayesian methods (BAnet and crq) 

in terms of RMSR and SD criteria. The RMSR and SD generated by (New B L Tobit Q Reg) 

are much smaller compared with the RMSR and SD generated by the other two methods. 

Also, let us evaluate our proposed (New B L Tobit Q Reg) compared with the two other 

methods via coefficients estimation by direct way criterion. From the results which belong to 

estimation  of direct way  criterion, the coefficients estimation  by our proposed method (New 

B L Tobit Q Reg) was very close to true parameters compared with Bayesian and non- 

Bayesian methods (BAnet and crq). This indicate that (New B L Tobit Q Reg) method has 

quite good performance compared with two other methods. Also to demonstrating the 

performance of our proposed method (New B L Tobit Q Reg), the real data approach has been 

used. The extramarital Affairs data is used for testing our proposed method (New B L Tobit Q 

Reg). This data is available in the R package “AER” and it was presented by (Fair in 

(1978))[21]. This data is used by (Ji et al., (2012))[37], (Alhamzawi, (2014))[2], and others 

and it contains censored response variable representing the number of times extramarital 

sexual encounters occurred during the past year (affairs).  The eight explanatory variables are 

gender (1 for female and 2 for male), age, number of years married, children (2 for existence 

of children in the marriage and 1 without children), religiousness (scale from 1 to 5), level of 

education, how much prestige their occupation (scale from 1 to 7) and rating the happiness in 

their marriage (scale from 1 to 5).  The sample size of extramarital Affairs data is 601 

observations. The response variable (affairs) has the high data censored, where 451 

observations are censored, and the rest of the observations uncensored (Fadel Hamid Hadi 

Alhusseini,2017)[25]. The (MSE) is computed by our proposed method and it is smaller than 

that of Banet method, for all Tobit quantile levels. These results prove that our proposed 

method can be considered better than Banet method. 

From all results which are listed from simulation approaches and real data we see our 

proposed method (New B L Tobit Q Reg) has a quite good performance in coefficients 

estimation and variable selection in Tobit Q Reg model compared with other methods. Also  it 

is consider a new extension to Bayesian penalized Tobit Q Reg model  

 For implementing variables selection by our proposed method (NewBL Tobit Q Reg)  we 

will build a new MCMC algorithm for determining the probability value for each independent 

variable in our model. The coefficients estimated by Bayesian approach is implemented via 

thousands of iterations. At each iteration new estimator will be generated according to the 

proposed algorithm (Gramacy, R. B., & Lee, H. K. H. (2008))[32]. All these estimations are 

compared with interval (-0.05, 0.05). If the coefficients estimated which belong to the 

independent variables outside the open interval (-0.05, 0.05), at probability value is greater 

than 0.5. This means the independent variable has a high relative importance in the model. On 

the contrary, if the estimated coefficients which belong to independent variables of outside the 

open interval (-0.05, 0.05), at probability value are less than 0.5. This means the independent 

variable has a weak relative importance in model (Reed, C, (2011))[62] and (Fadel Hamid 

Hadi Alhusseini 2017)[27][28]. Our method is implemented on Extramarital Affairs data at 

four Tobit quantile levels (θ1 = 0.15, θ2 = 0.35, θ3 = 0.75 𝑎𝑛𝑑 θ4 = 0.95). In Tobit Q Reg 

model at Tobit quantile levelθ1 = 0.15. There are four independent variables (𝑥1, 𝑥2, 𝑥5, 𝑥8) 

have probability values greater than 0 and there are four independent variables (𝑥3, 𝑥4, 𝑥6, 𝑥7) 

which have probability values less than 0.5. This means the independent variables 

(𝑥1, 𝑥2, 𝑥5, 𝑥8) have a high relative importance and the independent variables (𝑥3, 𝑥4, 𝑥6, 𝑥7) 

have a low relative importance in Tobit Q Reg at Tobit quantile levelθ1 = 0.15.   
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At quantile level θ2 = 0.35, we see independent variables (𝑥1, 𝑥2, 𝑥5, 𝑥6, 𝑥7, 𝑥8) have  a high 

relative importance in our model  because of their probability values are exceed 0.5. But the 

independent variables (𝑥3, 𝑥4) are have a low relative importance in the Tobit quantile 

regression model at level θ2 = 0.35 . Because of their probability values, not exceed 0.5. At 

Tobit quantile level θ3=0.75 and Tobit quantile level θ4=0.95 all independent variables have 

a high relative importance in our models (Tobit Q Reg ) . Because of their probability values 

greater than 0.5. More details about our proposed method (New BL Tobit Q Reg) are given in 

chapter three ,  

We also have new contribution to coefficients estimation and variable selection in composite 

Tobit Q Reg model via our proposed method Bayesian composite Tobit quantile regression 

(Bayesian composite Tobit Q Reg). The aforementioned approaches for modeling Tobit Q 

Reg focus on a single quantile level. However, the efficiency of Tobit Q Reg estimators 

depends on the Tobit quantile level. Because the distribution is unknown, it is difficult to 

select the most informative Tobit quantile which can provides an efficient estimator. (Zou and 

Yuan (2008))[76] were proposed new method for estimating the coefficients in regression 

model called composite quantile regression (Composite Q Reg) , and show the relative 

efficiency of these  estimators is greater than  70%  when compare with least square estimator 

regardless  of the error distribution. Composite quantile regression (Composite Q Reg) 

estimators are robust to the heavy tailed or outliers in the dependent variables and more 

efficient than a single quantile regression. For these characteristics we employ this approach 

in this study. The composite Tobit Q Reg model will be as follows:  

𝑇𝑖
∗ = 𝛼ℎ + 𝑥𝑖

𝑇𝛽ℎ + 𝜀𝑖 ,            ,        𝑦 = max(𝐶, 𝑇𝑖
∗)                                                                      [22] 

where ℎ = 1,… . . , 𝐻,. , 𝐻 is different quantiles ,0 < 𝜃1 < 𝜃2 < ⋯ < 𝜃𝐻 < 1 and 𝑖 =
1, … . . , 𝑛. In composite Tobit Q Reg  the parameters are estimated by solving the following 

equation   

(�̂�1, �̂�2, … , �̂�H, �̂�) =   ∑ {∑𝜌𝜃ℎ (𝑦𝑖 −max (𝑐, 𝛼ℎ + 𝑥𝑖
𝑇𝛽)

𝑛

𝑖=1

}

𝐻

ℎ=1

,                           [23]𝛼1……𝛼2,𝛽        
𝑀𝑖𝑛            

The Equation (23) is not differentiable at 0 point. Therefore, the minimization can be 

achieved through some modifications to algorithm proposed by (Koenker and D’Orey 

(1987))[46]. To estimate the Composite Tobit Q Reg coefficients, a Bayesian method is 

considered a new approach for this purpose. Via anew Gibbs sampler is proposed for posterior 

distribution inference. From known, the random error distribution of Tobit Q Reg is belong to 

(ALD). Therefore the joint distribution of response variable [𝑦(𝑖=1,2,……,𝑛)
𝑇 ] given 

[𝑥(𝑖=1,2,……,𝑛)
𝑇 ], [𝛼(𝑗=1,2,….ℎ)

𝑇 ]𝑎𝑛𝑑 [𝛽(𝑗=1,2,….ℎ)
𝑇 ] for composite Tobit Q Reg is  

𝑓(𝑦|𝑋, 𝛼, 𝛽) =∏𝜃ℎ
𝑛(1 − 𝜃ℎ)

𝑛𝑒𝑥𝑝 {−∑𝜌𝜃ℎ(𝑦𝑖 −𝑚𝑎𝑥{𝑐, 𝛼ℎ + 𝑥𝑖
𝑇𝛽}

𝑛

𝑖=1

}                         [24]

𝐻

ℎ=1

 

It is difficult to solve Equation (24) directly because of the mixture of H components. 

Following (Huang and Chen (2015))[34], we use a cluster assignment matrix 𝐶 whose 

(𝑖, ℎ)𝑡ℎelement 𝐶𝑖ℎ is equal to 1 if the 𝑖𝑖𝑡 subject belongs to the ℎ𝑡ℎ cluster, otherwise𝐶𝑖ℎ = 0. 

The element 𝐶𝑖ℎ is treated as missing value. Thus, our likelihood takes the form ''Fadel Hamid 

Hadi Alhusseini and Vasile Georgescu,2017''[23]. 

𝑓(𝑦|𝑋, 𝛼, 𝛽) = ∏ ∏ [𝜃ℎ(1 − 𝜃ℎ)𝑒𝑥𝑝{𝜌𝜃ℎ(𝑦𝑖 −𝑚𝑎𝑥{𝑐, 𝛼ℎ + 𝑥𝑖
𝑇𝛽}) }]

𝐶𝑖ℎ𝑛
𝑖=1

𝐻
ℎ=1                [25] 
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Also when using the equation (25) directly leads to difficult MCMC algorithm. Now we will 

used the Kozumi and Kobayashi proposition via reformulation of ALD to a mixture of normal 

distributions. For our Bayesian  hierarchical composite Tobit Q Reg, the formulation of 

(Kozumi and Kobayashi (2011))[49] can be written as:  

𝑦𝑖|𝛼ℎ, 𝛽, 𝑧𝑖  ~𝑁𝑜𝑟𝑚𝑎𝑙 (𝑚𝑎𝑥{𝑐, 𝛼ℎ + 𝑥𝑖
𝑇𝛽} + (1 − 2𝜃ℎ)𝑚𝑖, 2𝑚𝑖)  ,  𝑤ℎ𝑒𝑟𝑒  𝑚𝑖~𝐸𝑥𝑝(𝜃ℎ(1 −

𝜃ℎ))  .Under this formulation, the likelihood function of response variable is given as follows 

𝑓(𝑇𝑖
∗|𝛼ℎ, 𝛽, 𝑧𝑖) =  ∏

1

√4𝜋𝑚𝑖

 𝑒
1
2
∑ ∑

𝑐𝑖ℎ (𝑇𝑖
∗−𝛼ℎ−𝑥𝑖

𝑇𝛽−(1−2𝜃ℎ)𝑚𝑖)
2

2𝑧𝑖
𝐻
ℎ=1

𝑛
𝑖=1                                    [26]

𝑛

𝑖=1

 

The composite Tobit Q Reg parameters have desirable conditional conjugacy features for 

constructing a simple and attractive Gibbs sampler algorithm for fitting our model to the data. 

The equation (26) considers the likelihood function to coefficient estimation and variable 

selection of our proposed method (composite Tobit Q Reg) model. Therefore, we need 

hierarchical prior distributions to obtain full conditional posterior distributions  of our 

proposed method. The hierarchical prior distributions of composite Tobit quantile regression 

will be as follows:  

The prior distributions to parameters of (composite Tobit Q Reg) model is summarized as 

follows: The uniform distribution is assigned to parameter 𝛼ℎ , where 𝑝(𝛼ℎ) ∝ 1 and  normal 

prior distribution with mean 0 and variance 𝑠𝑗 is belong to the parameter 𝛽𝑗 . The parameter 𝑠𝑗 

is take exponential prior distribution with rate parameter (𝜆𝑗) . The parameter 𝜆𝑗 is distribute 

as gamma prior distribution with shape parameter (a) and scale parameter (𝑏).  a and 𝑏 are 

two hyper parameters which take initial values, where a=0.1 and b= 0.1. Therefore our 

Bayesian hierarchical model will be as follows: 

𝑦𝑖=𝑚𝑎𝑥{𝑐,𝑇𝑖
∗} ,             𝑖=1,….,𝑛,  

𝑇𝑖
∗|𝛼ℎ, 𝛽, 𝑧𝑖~[𝑁(𝛼ℎ + 𝑥𝑖

𝑇𝛽 + (1 − 2𝜃ℎ)𝑚𝑖, 2𝑚𝑖)]
𝑐𝑖ℎ ,  

𝑝(𝛼ℎ) ∝ 1                                                                                                                              [27] 

𝑚𝑖~𝐸𝑥𝑝 (𝜃ℎ(1 − 𝜃ℎ)) , 

𝛽𝑗~𝑁(𝑠𝑗)  

𝑠𝑗~𝐸𝑥𝑝 (
𝜆𝑗

2
),  

𝜆𝑗 ∝ 𝜆𝑗
𝑎−1𝑒𝑥𝑝{−𝑏𝜆𝑗}.  

From equation (26) and equation (27), we will obtain on the conditional posterior 

distributions. Therefore the hierarchical model to composite Tobit Q Reg model with Lasso 

penalty are: 

The full conditional posterior distribution of latent variable (𝑇𝑖
∗) is given by  

𝑇𝑖
∗|𝑦𝑖, 𝑚𝑖 , 𝛼ℎ, 𝛽~{

{Υ(𝑦𝑖),                                                                                          𝑖𝑓 𝑦𝑖 > 𝑐;

{∏ [𝑁(𝛼ℎ + 𝑥𝑖
𝑇𝛽 + (1 − 2𝜃ℎ)𝑚𝑖, 2𝑚𝑖)]

𝑐𝑖ℎ
𝐻

ℎ=1
} 𝐼(𝑇𝑖

∗ ≤ 𝑐), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   [28] 

where 𝑐  is equal zero  and Υ(𝑦𝑖)  denoted to a degenerate distribution. The full conditional 

posterior distribution of m𝑖 for 𝑖 = 1,… , 𝑛, is the Inverse Gaussian with mean 
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√∑ 𝐶𝑖ℎ (𝑇𝑖 − 𝛼ℎ − 𝑥𝑖
𝑇𝛽)2)⁄𝐻

ℎ=1   and shape parameter ∑ 𝐶𝑖ℎ 2⁄𝐻
ℎ=1  . The full conditional 

posterior distribution of αh is normal distribution with mean 

(�̃�ℎ
2∑ 𝐶𝑖ℎ

𝑛
𝑖=1 (𝑇𝑖

∗ − 𝑥𝑖
𝑇𝛽 − (1 − 2𝜃ℎ)𝑚𝑖) 2𝑚𝑖⁄ ) and variance (∑ (𝐶𝑖ℎ 2𝑚𝑖)⁄𝑛

𝑖=1 )−1. The full 

conditional posterior distribution of 𝛽𝑗[j=1, 2,….k] is normal distribution with mean 

(�̃�𝑗
2∑ ∑ 𝐶𝑖ℎ𝑥𝑖𝑗(𝑦𝑖 −

𝑛
𝑖=1

𝐻
ℎ=1 𝛼ℎ − ∑ 𝑥𝑖𝑙𝛽𝑙 − (1 − 2𝜃ℎ𝑙≠𝑗 )𝑚𝑖) (2𝑚𝑖)⁄ ) and variance 

(�̃�𝑗
2= (∑ ∑ 𝐶𝑖ℎ

𝐻
ℎ=1

𝑛
𝑖=1 𝑥𝑖𝑗

2 2𝑚𝑖⁄ ) + 𝑠𝑗
−1)−1). The full conditional posterior distribution of 

si
−1[j = 1,2, ……k] is the inverse Gaussian with mean √𝜆𝑗 𝛽𝑗

2⁄    and shape parameter 𝜆𝑗. The 

full conditional posterior distribution of 𝜆𝑗 is gamma distribution with shape parameter (𝑎 +

1) and scale parameter (𝑏 +
𝑠𝑗

2
). The full conditional posterior distribution of  Ciℎ =

(Ci1,Ci2,…… , CiH)
T is a multinomial distribution; 𝑝(𝐶𝑖|𝑦, 𝑋, 𝛼, 𝛽, 𝑧) ∝

multinomial(1, p̂1, … . , p̂H),    where p̂H =
exp[−(yi−αh−𝑥𝑖

𝑇𝛽−(1−2𝜃ℎ)𝑚𝑖 2mi⁄ ]

∑ expH
h=1 [−(yi−αh−𝑥𝑖

𝑇𝛽−(1−2𝜃ℎ)𝑚𝑖 2mi⁄ ]
 . From the full 

conditional posterior distributions are show in above formulas, we will obtain a simple and 

efficient Gibbs sampler algorithm. Our algorithm was run for 16,000 iterations and the first 

1000 were removed as burn in. Then, we think the subsequent iterations by keeping every 5th 

simulation draw and discarding the rest. For assessing our proposed method (Bayesian 

Composite Tobit Q Reg) the simulation approach and real data has been used ''Fadel Hamid 

Hadi Alhusseini and vasile Georgescu,2017''[23]. 

In simulation study, we will use three simulation approaches for assessing the performance of 

our method (Bayesian Composite Tobit Q Reg) via compared this method with Bayesian and 

non-Bayesian methods ‘crq, BAnet’. The methods under comparison are evaluated by 

(MMAD) where𝑀𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑚𝑒𝑎𝑛(|𝑥𝑇�̂� − 𝑥𝑇𝛽|)). And the standard deviations 

(SDs) of the MADs are also presented. 

Simulation 1 belongs to very sparse case. So, the true model parameters are 𝛽 =
(1,0,0,0,0,0,0,0)𝑇. The data is generated by the true model as follows: 

𝑦𝑖 = max(0, 𝑇𝑖
∗) ,     𝑖 = 1,2, …… . . ,100  ,        𝑇𝑖

∗ = 𝑥𝑇𝛽 + 𝜀𝑖 

where X  are distributed multivariate normal distribution a 𝑁𝑘(0, Σ𝑥) with (Σ𝑥)ℎ𝑙 = 0.5
|ℎ−𝑙|̇ , 

and( k=8) The 𝑇𝑖
∗ is latent variable with mean zero. The residuals  are generated from 5 

distributions: a 𝜀𝑖 ∼ 𝑁(0,1) (𝜀𝑖 is distributed stander normal with mean zero and variance one 

) , a 𝜀𝑖 ∼ 𝑡(3)(𝜀𝑖 is distributed a t-distribution at 3 degrees of freedom),a 𝜀𝑖 ∼ 0.5𝑁(1,1) +

0.5𝑁(−1,1)(𝜀𝑖 is distributed mixture normal distribution ) a 𝜀𝑖 ∼ Laplace (0,1),( 𝜀𝑖 is 

distributed stander Laplace distribution with location parameter 0 and scale parameter 1)  and 

𝜀𝑖 ∼ 0.5Laplace(1,1) + 0.5Laplace(−1,1) (𝜀𝑖 is distributed mixture Laplace distribution )  

  We set H=3 so that three Tobit quantile levels are:𝜃1 = 0.25, 𝜃2 = 0.50, 𝑎𝑛𝑑   𝜃3 =
0.75 where 𝜃ℎ = ℎ/(𝐻 + 1), ''Fadel Hamid Hadi Alhusseini and vasile Georgescu,2017''[23].  

From the results, we see the MMAD and standard deviations (SDs) computed by our 

proposed method (Bayesian Composite Tobit Q Reg) are much smaller than the standard 

deviations (SDs) and MMAD computed by crq and BAnet for all error distributions. This 

means that our proposed method (Bayesian Composite Tobit Q Reg) has a better performance 

than the two other methods.  

Simulation 2 is belong to dense case. So, the true model parameters are 𝛽 =

(0.85,……… . ,0.85)⏟            
15

𝑇
. The data  is generated by the true model as follows: 
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𝑦𝑖 = max(0, 𝑇𝑖
∗) ,     𝑖 = 1,2, …… . . ,100  ,        𝑇𝑖

∗ = 𝑥𝑇𝛽 + 𝜀𝑖 

Also the  covariates (X), distributed multivariate normal distribution a 𝑁𝑘(0, Σ𝑥) with 

(Σ𝑥)ℎ𝑙 = 0.5
|ℎ−𝑙|̇ , and( k=15) The 𝑇𝑖

∗ is latent variable with mean zero. The residuals  are 

generated for all distributions under consideration. In this simulation the results show that our 

proposed method (Bayesian Composite Tobit Q Reg) performs better than two other methods 

at three Tobit quantile levels and all residuals distributions. This clear from the results of 

(SDs) and MMAD which are generated by the methods where, (SDs) and MMAD are 

generated by our proposed method smallest than (SDs) and MMAD are generated by two 

other methods.  

Simulation 3 belongs to group structures Case. Therefore, the true model parameters are 𝛽 =
((1.5,1,0), (0,0,0), (1.8,1,0), (0,0,0), (1,1,0)𝑇. The data is generated by the true model as 

follows: 

𝑦𝑖 = max(0, 𝑇𝑖
∗) ,     𝑖 = 1,2, …… . . ,100  ,        𝑇𝑖

∗ = 𝑥𝑇𝛽 + 𝜀𝑖  

Also the  covariates (X), distributed multivariate normal distribution a 𝑁𝑘(0, Σ𝑥) with 

(Σ𝑥)ℎ𝑙 = 0.5
|ℎ−𝑙|̇ , and( k=15) The 𝑇𝑖

∗ is latent variable with mean zero. The residuals  are 

generated for all distributions under consideration. From the results of MMAD and SD are 

generated by our proposed method (Bayesian Composite Tobit Q Reg) are smallest than the 

SD and MMAD are generated by BAnet and crq for all residuals distributions.   These results 

indicate that the performance of our proposed method was well compared with two other 

methods (BAnet and crq). From the results which are recorded of three simulations, we 

conclude the our proposed method (Bayesian Composite Tobit Q Reg) has big importance for 

variable selection and coefficients estimation in Tobit quantile regression model compared 

with other methods in same field. To assess the performance of our method (Bayesian 

Composite Tobit Q Reg) with real data we will use labor force participation data which are 

available in the AER package in R. These data was introduced by (Mroz (1987))[56] and 

analysed using Tobit Q Reg in (Yu and Stander (2007))[]. The  description of labour force 

participation data are contain  response variable 𝑦: (hours) is consider wife’s hours of work in 

1975  and six explanatory variables are 𝑥1: (education) wife’s education in years, 𝑥2: 
(experience) actual years of wife’s previous labour market experience, 𝑥3: (age) age, 𝑥4: (tax) 

marginal tax rate facing the wife, 𝑥5: (oldkids) the number of children between ages six and 

eighteen in household and 𝑥6: (fincome) family income. the sample size of these data are n = 

753 observations , from it 325 are censored observations and the rest (423) observations are 

uncensored observations. We will used four Tobit quantile levels (𝐻 = 4, ℎ = 1,2,3, 𝐻 = 4)). 
It is determined as follows: 𝜃ℎ = ℎ/(𝐻 + 1) . 

where 𝜃1 =
1

5
= 0.20, 𝜃2 =

2

5
= 0.40 , 𝜃3 =

3

5
= 0.60  𝑎𝑛𝑑 𝜃4 =

4

5
= 0.80 .  

Then 𝜃 ∈ {0.20,0.40,0.60,0.80}.  

For evaluating our proposed method (Bayesian Composite Tobit Q Reg) we compared it with 

two other methods (Banet, crq) the mean squared error (MSE) for all methods studied has 

been calculated.  Through all Tobit quantile levels the (MSE) calculated by our proposed 

method (Bayesian Composite Tobit Q Reg) much smaller than (MSE) is calculated by two 

other methods. Therefore our proposed method (Bayesian Composite Tobit Q Reg) has a 

better performance compared with (Banet, crq) methods. From the results shown in 

simulations and real data approaches we conclude our proposed method (Bayesian Composite 

Tobit Q Reg) is quite well in coefficients estimation and variable selection in Tobit Q Reg 

model ''Fadel Hamid Hadi Alhusseini and Vasile Georgescu, 2017''[23].  
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In our method Bayesian Composite Tobit Q Reg, we will propose a new MCMC algorithm to 

variable selection through determination of relative importance for explanatory variables in 

our model. Where, all previous methods in field of variable selection contain their algorithms 

on the following condition, if coefficients estimation are closed from zero put them zero 

exactly. In our MCMC algorithm, we will propose a new procedure in variable selection via 

determination of relative importance to each explanatory variable via compared Bayesian 

estimation for each explanatory variable with open interval (-0.05, 0.05), for computation the 

probability value for this explanatory variable. If the Bayesian estimation for this explanatory 

variable outside interval (-0.05, 0.05) by probability value greater than 0.5, then this 

explanatory variable is active in our model. On the contrary, if the Bayesian estimation for 

this explanatory variable outside interval (-0.05, 0.05) by probability value less than 0.5 then 

this explanatory variable is inactive in our model. Therefore, we can delete it from our model. 

See (Reed, C (2011))[62] and (Alhamzawi, R., (2016))[5], (Fadel Hamid Hadi Alhusseini, 

2017))[27]. We employed our proposed method Bayesian Composite Tobit Q Reg to 

determinate the relative importance for explanatory variables of labour force participation 

data at two groups of Tobit quantile levels (H=5 and H=10). From results at five Tobit 

quantile levels (H=5) there are two explanatory variables (𝑥3: Age,  𝑥5: Oldkids) have a high 

relative importance in our model. Because these explanatory variables have probability values 

greater than 0.5, there are four explanatory variables (𝑥1: Education,  𝑥2: Experience, 𝑥4:Tax 

and 𝑥6:Fincome) with a low relative importance in our model (composite Tobit Q Reg at five 

composite quantile levels (H=5)). Also we used Bayesian Composite Tobit Q Reg at ten Tobit 

quantile levels (H=10). The results show four explanatory variables 

(𝑥1:Education,𝑥3:Age, 𝑥4:Tax, 𝑥5:Oldkids) with a high relative importance in  our model at 

ten Tobit quantile levels, because of their probability values greater than  0.5. But the rest of 

explanatory variables  (, 𝑥2:Experience, 𝑥6:Fincome) have a low relative importance in  

composite Tobit Q Reg model at ten Tobit quantile levels,, because of their probability values 

less than  0.5. Therefore, we can cancel explanatory variables( 𝑥2: Experience, 𝑥6: Fincome) 

from composite Tobit Q Reg model at ten Tobit quantile levels lines. More details are shown 

in chapter four ,the orginal results are published in [23]Fadel Hamid Hadi Alhusseini, and 

Vasile Georgescu 2017 " Bayesian composite Tobit quantile regression." Journal of Applied 

Statistics (2017): pp 1-13.  

According to the results we think that our proposed methods (new Bayesian Lasso Tobit Q  

Reg and Bayesian Composite Tobit Q Reg) have a good performance in coefficients 

estimation and variables selection in Tobit Q Reg model. 

 Therefore, we will use these two proposed methods for modelling the relationship between 

response variable (Iraqi banks' investments) and nine of explanatory variables are 𝑥1:Banking 

Deposits , 𝑥2:Banking profits, 𝑥3:Bank capital, 𝑥1:Bank reserves, 𝑥5:Banking Loans, 

𝑥6:Advertising Expenses, 𝑥7:Age of the Bank, 𝑥8:Number of Bank Branches, 𝑥9:bad debt. 

The response variable (Iraqi banks' investments) is censored from left side at zero point. Tobit 

regression model considers effective regression model with censored response variable. But 

Tobit regression model is sensitive from many problems. Also Tobit regression model is not 

capable of providing a complete information about the stochastic relationships between 

dependent variable and explanatory variables. To overcoming these problems the Tobit 

quantile regression (Tobit Q Reg) model has been used. In order to analyse our data (banking 

investments data), we will use Tobit quantile regression model as follows:  

𝑦𝑖 = max(0, 𝑇𝑖
∗) ,𝑇𝑖

∗ = 𝛼 + 𝛽1𝜃𝑥1𝑗 + 𝛽2𝜃𝑥2𝑗 + 𝛽3𝜃𝑥3𝑗 + 𝛽4𝜃𝑥4𝑗 + 𝛽5𝜃𝑥5𝑗 + 𝛽6𝜃𝑥6𝑗 +

𝛽7𝜃𝑥7𝑗 + 𝛽8𝜃𝑥8𝑗 + 𝛽9𝜃𝑥9𝑗 + 𝑢𝑖𝜃                                               𝑗=1,2,…….47 
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where: 𝑦  is censored response variable (Iraqi banks' investments). 𝑇𝑖
∗ is latent variable 

𝑥𝑖 , [𝑖 = 1,2 , … 9] are explanatory variables as above description. (𝛽1𝜃, … , 𝛽9𝜃) parameters 

which are estimated by our proposed methods as following:  

New Bayesian Lasso Tobit Q Reg  is used for coefficients estimation and variable selection in 

Tobit Q Reg model which is showed above via thirty  Tobit  quantile levels. This mean we 

will obtain thirty  Tobit quantile regression models. We employed our proposed method (New 

Bayesian Lasso Tobit Q  Reg) in two sides: 

Firstly: coefficients estimation of Tobit quantile regression model via thirty Tobit quantile 

levels.  

Secondly: we will determine the relative importance to explanatory variables in Tobit quantile 

regression model via the probabilistic approach. If the explanatory variable has a probability 

value greater than 0.5 this means it has a high relative importance in constructing our model. 

But when, its probability value less than 0.5. This means it has a negligible relative 

importance in constructing our model. Therefore, we can remove it from this model. To  

identify active  independent variables in Iraqi banks investments which depend on the relative 

importance to these variables thirty different Tobit quantile  levels have been used. 

Our proposed method (Bayesian composite Tobit Q Reg) has a high quality for coefficients 

estimation and variable selection in composite  Tobit Q Reg model  Here  we will use six 

groups of Tobit quantile levels , (five Tobit quantile levels, ten Tobit quantile levels, fifteen 

Tobit quantile levels, twenty Tobit quantile levels, twenty five Tobit quantile levels and thirty 

Tobit quantile levels). Each group has a specific composite Tobit Q Reg model based on the 

number of Tobit quantile levels. We will use our method (Bayesian composite Tobit Q Reg) 

in two ways as follows:  

Firstly: coefficients estimation in composite Tobit Q Reg model at six groups of Tobit 

quantile levels:  

Secondly: variable selection in composite Tobit quantile regression model at six groups of 

Tobit quantile levels. 

 

 

 

 

 

 

 

 

 

 

 

Chapter One 
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General Concepts 

 

1.1:Variable Selection 

      In many applications, variable selection (VS) has become a popular. It is the process of 

choosing a subset of the significant variables for use in model constructing. It provides a good 

prediction as well as highlighting the variables, which are significant in fitting the model 

(Griffin and Brown, (2010))[29]. The main assumption when using VS is that the data 

contains many unimportant variables. Therefore, there are two main objectives  must  

distinguished when create regression model: The first objective is prediction accuracy with a 

regard of a good structure of  the regression model . The second objective is explanation for 

the coefficients of regression, through  the attempt to determine influential independent 

variables and obtain insight on the relevance between the independent variables and the 

response variable via the structure of regression model. In fact, many independent variables 

may be considered as a weak independent variables in the model , but only a little number 

will have a significant impact. But identify insignificant independent variables are hard 

matter. Oftentimes, variable selection  considers a good practical advantage and one of  

important requirements   when constructing the regression model. Therefore, excluding the 

independent variables have  an insignificant effect on regression model are of the  interest of 

the model . And keeping the important independent variables in model , this it  is  improve  

the predictive accuracy in this model, also this is useful in  interpretation.  

In our thesis, we focus on  extension  Lasso technique in Bayesian approach.  

 

1.1.1: Classical Lasso Regression 

Lasso Regression is a method  for coefficients estimation  and variable selection concurrently. 

The word  Lasso is abbreviated for  a set of words “Least Absolute Shrinkage and Selection 

Operator” . This method is  introduced by (Tibshirani (1996))[64]. The Lasso regression  

coefficients  are given by: 

:�̂�𝑙𝑎𝑠𝑠𝑜 = minimize ∑ (𝑦 − 𝑋�̂�)
2
       𝑠. 𝑡  ∑ |𝛽𝑗| ≤ 𝑡                                                    [1.1]

𝑝
𝑗=1

𝑛
𝑖=1  

where ∑ |𝛽𝑗| ≤ 𝑡   
𝑝
𝑗=1        𝐿1−  𝑛𝑜𝑟𝑚  𝑓𝑜𝑟 𝑟𝑒𝑔𝑟𝑒𝑒𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑒𝑛𝑡𝑠. 

𝑡 is tuning parameter which is responsible about  quantity of  shrinkage .  

 

1.1.2: Variable Selection in Tobit Quantile Regression Model  

1.1.2. 1: Lasso Tobit Quantile Regression Model 

 Tobit QReg model  is consider on of  important regression models is defined according the 

equation (1.9).  But the Lasso Tobit quantile regression model take the following formula 

 ∑𝜌𝜃

𝑛

𝑖=1

𝛼𝜃,𝛽𝜃
𝑚𝑖𝑛 (𝑦𝑖 −𝑚𝑎𝑥{𝐶, 𝑦𝑖

∗}) + 𝜆∑|𝛽𝑗|                                                                            [1.2]

𝑝

𝑗=1

 

where quantity 𝜆 ∑ |𝛽𝑗|,
𝑝
𝑗=1  is called penalty Lasso. The equation 1.2 can achieving variable 

selection and coefficient estimation in TQReg model simultaneously.   
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1.1.2.2: Bayesian Lasso Tobit Quantile Regression Model 

It is consider efficient and effective method for achieving variable selection and coefficients 

estimation in Tobit quantile regression model .(Tibshirani (1996))[64] mentioned that 

Bayesian Lasso regression model is achieved through using Laplace prior distribution. The 

Bayesian Lasso Tobit quantile regression can be obtaining via  multiply Likelihood 

asymmetric Laplace distribution (ALD) by prior Laplace distribution. From known the prior 

distribution plays an important role for determined appropriate method for variable selection 

(Fadel Hamid Hadi Alhusseini, 2017)[25]. When we  are used The normal distribution for 

parameters vector 𝛽𝜃, as prior  

𝑝(𝛽|𝜇, 𝜗) =
1

√2𝜋𝜗
𝑒−

(𝛽𝜃−𝜇)
2

2𝜗                                                                                                 [1.3] 

the posterior distribution are took the following  formula :  

𝑓(𝛽𝜃|𝑦, 𝑥, 𝜇, 𝜗) ∝ 𝑒𝑥𝑝 {−∑𝜌𝜃(𝑦𝑖 −𝑚𝑎𝑥{0, 𝑦𝑖
∗}

𝑛

𝑖=1

}  −
(𝛽𝜃 − 𝜇)

2

2𝜗
                                     [1.4]   

Bayesian estimation  in equation (1.4) is a Bayesian ridge regression. Hence, all coefficients  

will shrinkage to zero but not equal zero exactly. But when we employ  the Laplace prior 

distribution for parameter vector 𝛽𝜃, it which is take the following  equation: 

𝑔(𝛽𝜃|𝜆) = (
𝜆
2⁄ )
𝑝 exp(−𝜆∑ |𝛽𝜃|

𝑝
𝑗=1 )                                                                                       [1.5]. 

We will obtained the posterior distribution for the Tobit quantile regression coefficients: as 

follows 

𝑓(𝛽𝜃|𝑦, 𝑥, 𝜆) ∝ 𝑒𝑥𝑝 {−∑𝜌𝜃(𝑦𝑖 −𝑚𝑎𝑥{0, 𝑦𝑖
∗}

𝑛

𝑖=1

}   − 𝜆∑|𝛽𝜃|

𝑝

𝑗=1

                                            [1.6] 

Bayesian estimation in Equation (1.6) is the Bayesian Lasso Tobit Q Reg. Hence, some 

parameters will shrinkage to zero exactly, this means, Bayesian Lasso regression achieves 

variable selection and coefficient estimation in Tobit Q Reg model.  

The Bayesian Lasso Tobit Q Reg model is used  the ALD as Likelihood function (Yu and  

Moyeed, (2001))[]. And it is uses the Laplace prior  distribution  for achieves the variable 

selection in Tobit Q Reg model. But It is difficult to dealing with Laplace distribution 

directly, therefore, many researchers use a simple formula for Laplace distribution which 

introduced by (Andrews and Mallows (1974)) [5]. 

𝜆

2
𝑒−𝜆|𝛽𝑗| = ∫

1

√2𝜋𝑠𝑗

∞

0
𝑒
−𝜆2

2𝑠𝑗
𝜆2

2
𝑒
−𝜆2

2
𝑠𝑗   𝑑𝑠𝑗               𝜆 > 0                                                           [ 1.7 ]       

This formula in equation (1.7), which product active  and  simple Gibbs sampling algorithm 

in field of Bayesian variable selection. 

1.1.2. 3.: Bayesian Tobit Quantile Regression With New Lasso  

Lasso technique is used with a Bayesian approach when the parameter vector belongs to 

Laplace prior  distribution (Tibshirani (2011))[65] and ( Park and Casella (2008))[60]. They 

used another formula for Laplace distribution, this  formula is scale mixture of normal (SMN) 

and is consider more flexibilities for achieving variable selection which it proposed by 

(Andrews and Mallows: (1974))[5]. Recently ,(Mallick and Yi (2014))[55] provided a new 

formula  to Laplace prior distribution  by using the SMU via following formula. 
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𝜆

2
𝑒−𝜆|𝛽| = ∫

1

2𝑢

∞

𝑢>|𝛽|

 
𝜆2

Γ(2)
𝑢2−1𝑒−𝜆𝑢 𝑑𝑢          𝜆 > 0                                                                [1.8] 

where (
1

2𝑢
) is  (pdf) for uniform prior distribution and rest function  from above formula it 

represent (pdf) for gamma  prior distribution with rate parameter two  and scale parameter 𝜆 . 

and Γ(2) = (2 − 1)! = 1   

prove  

𝜆

2
𝑒−𝜆|𝛽| = ∫

𝜆2

2
𝑒−𝜆𝑠

∞

𝑠>|𝛽|

  𝑑𝑠                                                                                                         [1.9] 

𝜆

2
𝑒−𝜆|𝑧| = [

𝜆2

2

𝑒−𝜆𝑠

−𝜆
 ]
|𝛽|

∞

= [−
𝜆

2
𝑒−𝜆𝑠 ]

|𝛽|

∞

= −
𝜆

2
𝑒−𝜆∞ − (−

𝜆

2
𝑒−𝜆|𝛽|) =

𝜆

2
𝑒−𝜆|𝛽|  

According proposition of  (Mallick and Yi   (2014))[55] the  equation (1.9) which 

representation  alternative formula for Laplace prior distribution for implementation variables 

selection  in  classical liner regression model. In this thesis, we will use the equation (1.9) in 

our proposed method (new Bayesian Lasso Q Reg  ) via building  of an efficient and simple 

Gibbs sampling algorithm  for achieving variable selection and coefficients estimation in Q 

Reg model. Also, we extend this idea in our proposed method (new Bayesian Lasso Tobit  Q 

Reg  )  via constructing an efficient Gibbs sampling algorithm  for achieving variable 

selection and coefficients estimation in Tobit Q Reg model. 
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Chapter 2 

 

New Bayesian Lasso quantile regression  

   

2.1- Introduction 

The linear Q Reg model assumes that the outcome (response variable) (𝑦𝑖) can be written as: 

𝑦𝑖 = 𝑥𝑖
𝑇𝛽𝜃 + 𝜀𝑖,               𝜃 ∈ (0,1),                                                                                      [2.1 ] 

where 𝑥𝑖
𝑇 is a 1 × 𝑘 vector of covariates (explanatory variables), 𝛽𝜃 is a 𝑘 × 1 vector of 

unknown quantities and 𝜃 is the quantile level. Here, 𝜀𝑖 is the residual term whose density is 

restricted to have the 𝜃𝑡ℎ quantile equal to 0. Similar to the standard mean regression, Q Reg 

aims at evaluating the conditional quantiles of the outcome of interest (𝑦𝑖) given an 

explanatory vector 𝑥𝑖 . It can be proved (Koenker and Bassett, (1978))[38] that the Q Reg 

coefficients of 𝛽𝜃 can be estimated by:  

   ∑𝜌𝜃(𝑦𝑖 − 𝑥𝑖
𝑇𝛽𝜃)

𝒏

𝒊=𝟏

𝛽𝜃
𝑚𝑖𝑛                                                                                                             [2.2] 

where 𝜌𝜃(𝑠) is the check function defined by 𝜌𝜃(𝑠) = 𝑠{𝜃 − Ι(𝑠 ≤ 0)}. Also, the check 

function can be written by another formula, as follows. 

𝜌𝜃(𝜀) = {
𝜃𝜀                                  𝑖𝑓 𝜀 ≥ 0    

−(1 − 𝜃)𝜀                            𝑖𝑓𝜀 < 0               
                                                        [2.3] 

Since equation (2.2) is not differentiable at the origin, there is no exact form solution for (2.2) 

(Koenker, (2005))[42] the minimization of (2.2) can be achieved by a linear programming 

algorithm (Koenker and D’Orey,( 1987))[46].  

Although asymptotic properties for Q Reg are well studied, the development of appropriate 

inference procedures has been difficult. For simplicity of notation, we will omit 𝜃 from the 

notation 𝛽𝜃 in the remainder of this chapter. One significant issue in building a regression 

model is the selection of the active regressors (covariates).. The selection process aims to 

increase the prediction accuracy and to get high interpretation (Alhamzawi et al., (2012))[1]. 

Nowadays, there has been considerable attention on sparse methods that include all regressors 

in the model and use informative priors to shrink inactive regression coefficients to zero. For 

example, Lasso (Tibshirani, (1996))[64], the adaptive Lasso (Zou, (2006)[], Dantzig selector 

(Candes and Tao, (2007))[15], matrix completion (Candes and Recht, (2009))[16], 

compressive sensing (Baraniuk, (2007))[10], Lasso Q Reg (Li and Zhu, (2008))[53] and 

adaptive Lasso Q Reg (Wu and Liu, (2009))[67]. A comprehensive account of these and other 

recent methods can be found in (Tibshirani, (2011))[65]. Similarly, from a Bayesian 

framework, (Park and Casella (2008))[60] proposed Bayesian Lasso for linear regression 

models by specifying scale mixture of normal (SMN) prior distributions on the regression 

coefficients and independent exponential prior distributions on their variances. (Sun et al. 

(2010))[63] developed Bayesian adaptive Lasso by allowing different shrinkage parameters 

for different coefficients. Based on the latest approaches Li et al. (2010) suggested Bayesian 

Lasso Q Reg and( Alhamzawi et al. (2012))[1] proposed Bayesian adaptive Lasso Q Reg. 

Some further extensions of the Lasso Q Reg models have also suggested by (Benoit et al. 

(2013))[13], (Alhamzawi and Yu (2014))[2] and (Alhamzawi (2014))[3], among others. 

Compared to the frequentist counterparts, the Bayesian models usually offer a valid measure 

of standard error based on a MCMC. It also offers a convenient method of incorporating 

regression coefficients uncertainty into predictive inferences. Moreover, the Bayesian 

formulation offers a flexible way of estimating the penalty parameter along with regression 

coefficients. 

Our objective is to develop a Bayesian formulation for regularization in linear Q Reg. 

Recently, for linear regression, (Mallick and Yi (2014))[55] provided a different approach of 

Lasso-based model by employing the scale mixture of uniform formulation of the Laplace 

density. The performance of this method was illustrated via simulation studies and a real 
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dataset. (Mallick and Yi (2014))[55] show that the new method performs quite well compared 

to some other existing methods. In this chapter , we propose a new formulation for Bayesian 

Lasso Q Reg by employing the scale mixture of uniform formulation. Then we develop a fully 

Bayesian treatment that leads to a simple and efficient Gibbs sampling algorithm with 

tractable full conditional posterior distributions.  

2 .2–  Estimation Methods  

2.2.1- Bayesian Quantile Regression Model 

Within the Bayesian Q Reg formulation, a popular choice of the error distribution has 

been skewed Laplace distribution (SLD); see Yu and Moyeed (2001). The probability 

density function (pdf) of a SLD is 

𝑓(𝜀𝑖|𝜎) = 𝜃(1 − 𝜃)𝜎 𝑒𝑥𝑝{−σ𝜌𝜃(𝜀𝑖)},                𝜀𝑖 ∈ ℝ,                                                    [2.4]. 

With mean Ε(𝜀𝑖) =
(1−2𝜃)

𝜎𝜃(1−𝜃)
  , and  Var(𝜀𝑖) =

(1−2𝜃+2𝜃2)

𝜎2𝜃2(1−𝜃)2
  . 

where  𝜎 is the scale parameter 𝜎 > 0,  and 𝜃 is shape parameter determines the quantile level 

in response distribution . It belongs to interval (0,1) (Yu and Zhang,( 2005))[72]. The joint 

distribution of  𝜀 = (𝜀1, 𝜀2, … . 𝜀𝑛)
𝑻  is 

𝑓(εi|σ) = θ
n(1 − θ)nσn exp {−∑σ𝜌θ(εi)

𝐧

𝐢=𝟏

} ,                                                                      [2.5] 

Then  

𝑓(y|σ) = θn(1 − θ)nσn exp {−∑σ𝜌θ(𝑦𝑖 − 𝑥𝑖
𝑇𝛽𝜃)

𝐧

𝐢=𝟏

} ,                                                        [2.6] 

Following( Koenker and Machado (1999))[48] the check (loss) function (2.2) is closely 

equivalent to (2.4). In particular, maximizing (2.4) is equivalent to minimizing (2.2). The 

relationship between (2.2) and (2.4) can be employed to represent the Q Reg method in the 

likelihood framework. The skewed Laplace distribution (SLD) has good properties, see (Yu 

and Zhang; (2005))[72] for more details. But  the using of   equation (SLD) directly  is a hard 

task, and provide us difficult and inefficient algorithm. Also  skewed Laplace distribution take 

various mixture representation (Kotz et al (2001))[44] .  Therefore  (Kozumi and Kobayashi 

(2011))[49] provided a Bayesian approach for Q Reg by reformulated the SLD as SMNs 

family. More specifically, let εi~N((1 − 2θ)𝑚𝑖 , 2𝜎
−1𝑚𝑖) Then the SLD for 𝜀𝑖 Arises when 

𝑚𝑖~𝐸𝑥𝑝(θ(1 − θ)𝜎). Here we use   another formula  to  the random error 𝜀𝑖  As scale 

mixture normal distribution with mean (1 − 2θ)𝑚𝑖  And variance 2𝜎−1𝑚𝑖   .  

where 𝑚𝑖  Is distributed exponential distribution with rate parameter (θ(1 − θ)𝜎) and 𝜖𝑖 is 

distributed  as  normal distribution with mean (0) and variance (1). 

Therefore             𝑦𝑖~N(𝑥𝑖
𝑇𝛽𝜃 + (1 − 2θ)𝑚𝑖, 2𝜎

−1𝑚𝑖) 
Under the above hierarchical formulation, the posterior distribution of interest 

𝑝(𝛽𝜃|𝜎, 𝑚1, ……𝑚𝑛) is a multivariate normal. 

 

 2.2.2.  Bayesian Q Reg with the Lasso penalty 

 

The Lasso quantile regression (Q Reg)  (Li and Zhu, (2008))[53] is given by  

   ∑𝜌𝜃(𝑦𝑖 − 𝑥𝑖
𝑇𝛽𝜃)

𝒏

𝒊=𝟏

𝛽𝜃
𝑚𝑖𝑛 + 𝜆 ∥ 𝛽𝜃 ∥ ,                                                                                      [2.8] 

where  𝜆, ( (𝜆 ≥ 0) is the shrinkage parameter, Also the equation (2.8) is not differentiable at 

0, but possible, achieving parameters estimation through   (rq.fit.Lasso) function (Koenker, R. 

(2005))[42] within  Package ‘quantreg’ (2013).   

The  method of the Bayesian quantile regression model using coefficients estimation only. As 

method proposed by  (Yu and Moyeed ,(2001))[]. But Bayesian Lasso quantile regression  

implements  variables selection and coefficient estimation to quantile regression model 
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simultaneously. (Li et al. (2010))[52] proposed the Bayesian Lasso for linear Q Reg model by 

putting a Laplace prior takes the form. 𝑝(𝛽𝑗|𝜆, 𝜎) =
𝜎𝜆

2⁄  𝑒𝑥𝑝{−𝜎𝜆|𝛽𝑗|}  On the 𝑗𝑡ℎ Q Reg 

coefficient. More specifically, they put a scale mixture of normal prior  distributions on 𝛽𝜃 

And exponential prior distributions for the variance parameters assuming they are 

independent. In this chapter, we put a Laplace prior on 𝛽𝑗 Takes the form 𝑝(𝛽𝑗|𝜆) =
𝜆
2⁄  𝑒𝑥𝑝{−𝜆|𝛽𝑗|} And develop an alternative hierarchical Bayesian model of the Lasso 

model. 

Following (Mallick and Yi, (2014))[55], the Laplace prior to 𝛽𝑗 Can be written as: 

𝜆

2
𝑒{−𝜆|𝛽𝑗|} =

𝜆

2
∫ 𝜆

.

𝑢𝑗>|𝛽𝑗|

 𝑒𝑥𝑝{−𝜆𝑢𝑗} 𝑑𝑢𝑗     , 

= ∫
1

2𝑢𝑗
 
𝜆2

Γ(2)

,

−𝑢𝑗<𝛽𝑗<𝑢𝑗

𝑢𝑗
2−1 𝑒𝑥𝑝{−𝜆𝑢𝑗} 𝑑𝑢𝑗     ,                                                                   [2.9] 

where  Γ(2) = (2 − 1)! = 1 

= ∫  
𝜆2

2

,

−𝑢𝑗<𝛽𝑗<𝑢𝑗

 𝑒𝑥𝑝{−𝜆𝑢𝑗} 𝑑𝑢𝑗     , 

where  𝑢𝑗  is a mixing variable. We further put Gamma priors on, 𝜎 𝑎𝑛𝑑 𝜆.  Using (2.7) and 

(2.9), our Bayesian hierarchical model can be formulated as follows: 

         𝑦𝑖|𝛽𝜃, 𝜎,𝑚𝑖~𝑁(𝑥𝑖
𝑡𝛽𝜃 + (1 − 2𝜃)𝑚𝑖, 2𝜎

−1𝑚𝑖),   
        𝑚𝑖|𝜎~𝑒𝑥𝑝{𝜃(1 − 𝜃)𝜎}, 
        𝛽𝑗|𝑢𝑗~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−𝑢𝑗 , 𝑢𝑗), 

        𝑢𝑗|𝜆 ~𝐺𝑎𝑚𝑚𝑎(2, 𝜆) ,                                                                                                       [2.10] 

         𝜎 ~𝜎𝑎−1𝑒𝑥𝑝(−𝑏𝜆), 
        𝜆~𝜆𝑐−1𝑒𝑥𝑝(−𝑑𝜆) . 
Here, 𝐸𝑥𝑝(𝜃(1 − 𝜃)𝜎)Refers to the exponential distribution with rate parameter 𝜃(1 − 𝜃)𝜎. 

 

2.3. Conditional Posterior Inference 

The conditional posterior distributions are considered an important part in the Bayesian 

approach. Where the posterior distribution denoted 𝑓(𝛽|𝑦) Gives us complete information 

about parameter estimation. The posterior distribution output from the likelihood function 

denoted 𝑓(𝑦|𝛽) Provides full information about the data and prior distribution denoted 𝑔(𝛽) 
Which provides complete information about the unknown parameter: (Arto Luoma, 

(2014))[7] The conditional posterior distributions are defined according to a following 

mathematical formula: 

𝑓(𝛽|𝑦) =
𝑓(𝑦,𝛽)

𝑓(𝑦)
=
𝑓(𝑦|𝛽)∗𝑔(𝛽)

𝑓(𝑦)
=∝ 𝑓(𝑦|𝛽) 𝑔(𝛽).                                                                [2.11]                              

where :∝  is  (proportional to) represent constant values 

Bayesian approach is an efficient method for estimation of coefficient quantile regression 

through deriving the good conditional posterior distribution. We will obtain conditional 

posterior distribution of  𝛽,𝑚, (𝑚1, …𝑚𝑛)
𝑇 , 𝑢 = (𝑢1, … 𝑢𝑛)

𝑇  and 𝜆 can be updated using an 

efficient MCMC-based computation technique.  
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The conditional posterior distribution of  𝛽  is truncated normally with mean 

(𝜎𝛽𝑗
2 ∑

 𝜎𝑥𝑖𝑗  (𝑦𝑖−(1−2𝜃)𝑚𝑖−∑ 𝑥𝑖𝑗
𝑝
,𝑗≠𝑙 𝛽𝑗)

    

2𝑚𝑖

𝑛
𝑖=1 )  𝐼{|𝛽𝑗| < 𝑢𝑗} and variance (∑

𝜎𝑥𝑖𝑗
2

2𝑚𝑖

𝑛
𝑖=1 )

−1

.  The 

conditional posterior distribution of  𝑚  is inverse Gaussian distribution with mean 
1
√(𝑦𝑖 − 𝑥𝑖

𝑡𝛽)2⁄   and shape parameter (
𝜎

2
). Conditional posterior distribution of 𝑢𝑗  is a left-

truncated exponential distribution given by 𝑢𝑗|𝛽, 𝜆~𝐸𝑥𝑝(𝜆)𝐼{𝑢𝑗 > |𝛽𝑗|}. Conditional 

posterior distribution of the penalty parameter 𝜆 is Gamma distribution with shape parameter 

(𝑐 + 2𝑝) and rate parameter (𝑑 + ∑ |𝛽𝑗|
𝑝
𝑗=1 ). Also the conditional posterior distribution of 𝜎  

is Gamma distribution with shape parameter (𝑎 +
3𝑛

2
 ) and rate parameter 

(∑ (
(𝑦𝑖−𝑥𝑖

𝑡𝛽+(1−2𝜃)𝑚𝑖)
2

4𝑚𝑖
+ 𝜃(1 − 𝜃)𝑚𝑖) + 𝑏

𝑛
𝑖=1 ). From the full conditional posterior 

distributions we proceed to sample each unknown parameter (𝛽, , , 𝑚, (𝑚1, …𝑚𝑛)
𝑇 , 𝑢 =

(𝑢1, … 𝑢𝑛)
𝑇  , 𝜆 and 𝜎. We will obtaine a good Gibbs sampler for coefficient estimations and 

variable selection in new Bayesian Lasso quantile regression model. 

 

 

2.5.Chapter Summary 

 

In this chapter, we propose a new Bayesian Lasso quantile regression method for variable 

selection, assigning independent scale-mixture of uniform distributions for the regression 

coefficients. Then, a simple and efficient MCMC algorithm was presented for Bayesian 

sampler. Simulation studies and a real data set are used to investigate the performance of the 

proposed method compared to some other existing methods. Both simulated and real data 

examples show that the proposed method performs quite well compared to the other methods 

under a variety of scenarios.   
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Chapter three 

 

New Bayesian Lasso in Tobit quantile regression 

3.1: Introduction  

The using of the optimal model is a challenging task, but for each dataset, there is an optimal 

model. In case of the Tobit regression model, there is an adaptation with left censored data. 

Since the seminal work of (Tobin, J., (1958))[66] this model has given good estimates when 

achieving the normal assumptions or when the datasets are empty from outliers. It becomes 

useless when one of the normal assumptions is broken or when outliers exist in the dataset. 

For overcoming this problem, Tobit quantile regression has been used, which can estimate its 

coefficient when the data are not achieving the normal assumption. This model was 

introduced by (Powell, (1986))[59] and is defined by the formula below: 

 

 𝑇𝑖
∗ = 𝛼𝜃 + 𝑥𝑖

𝑇𝛽𝜃 + 𝜀𝑖,            ,        𝑦 = max(𝐶, 𝐿𝑖
∗
)  [3.1] 

where 𝑇𝑖
∗ is latent unobserved response variable, (𝛼𝜃, 𝛽𝜃) are intercept and vector unknown 

parameters of the Tobit quantile regression respectively, and 𝜃 is quantile level belonging to 

the open interval (0,1) as 𝜃 ∈ (0,1), 𝑦𝑖 is censored response variable at the censoring point 

(𝐶). 
For estimating the parameters of the Tobit quantile regression, we minimized the following 

loss function:  

 = ∑𝜌𝜃

𝑛

𝑖=1

𝛼𝜃,𝛽𝜃
𝑚𝑖𝑛 (𝑦𝑖 −𝑚𝑎𝑥{𝐶, 𝑇𝑖

∗}) [3.2] 

In Tobit quantile regression, the censored point (𝐶) is equal to zero. Therefore, the loss 

function (3.2) takes the following formula:  

 

 = ∑𝜌𝜃

𝑛

𝑖=1

𝛼𝜃,𝛽𝜃
𝑚𝑖𝑛 (𝑦𝑖 −𝑚𝑎𝑥{0, 𝑇𝑖

∗}) [3.3] 

where 𝜌𝜃(𝜀) is called check (loss) function of (Koenker and Bassett (1978))[38] at a quantile 

𝜃.  

Therefore, the equation [3.3] can be rewritten as below: 

 𝜌𝜃(𝑢)  = {
(𝜃)| 𝑦 − 𝑚𝑎𝑥(0, 𝛼𝜃 + 𝑥𝑖

𝑇𝛽𝜃 + 𝜀𝑖)|                    𝑦 ≥ 𝑚𝑎𝑥(0, 𝛼𝜃 + 𝑥𝑖
𝑇𝛽𝜃 + 𝜀𝑖) 

−(1 − 𝜃)| 𝑦 − 𝑚𝑎𝑥(0, 𝛼𝜃 + 𝑥𝑖
𝑇𝛽𝜃 + 𝜀𝑖)|             𝑦 < 𝑚𝑎𝑥(0, 𝛼𝜃 + 𝑥𝑖

𝑇𝛽𝜃 + 𝜀𝑖)   
 [3.4] 

 

The coefficients estimation (Tobit QReg) is performed by minimization of the equation [3.4]. 

The equation [3.4] is not differentiable at 0, so there is not an exact form of the solution for 

the parameters (Koenker, 2005))[42]. The minimization of the equation [3.4] can be resolved 

by a linear programming algorithm (Koenker and D’Orey, (1987))[46]. Although asymptotic 

properties for Tobit QReg are well studied and many algorithms are proposed, most of these 

algorithms are inefficient, when the response variable has high censored data. Currently, a 

possible estimation of coefficients (Tobit QReg) by (crq) function, exists in the package 

(quanTobit Req) (Koenker, (2011))[45].  

 

 3.2:Methodology of New Bayesian Lasso Tobit Quantile Regression 
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The Bayesian approach is considered one method for coefficients estimates in regression 

models. Where, it depends on the likelihood function for random error term and prior 

distribution for model parameters, as following: 

 

𝑝(𝜃|𝑌𝑖) ∝ 𝑓(𝑌𝑖|𝜃) × 𝑝(𝜃)                                                                                                           [3.5] 
 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟  𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 ∝ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ×  𝑝𝑟𝑖𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛  
 

3.2.1.Likelihood Function of Tobit Quantile Regression 

 

(Koenker (2005))[42] provided us with a number of algorithms used to estimate Tobit QReg. 

Some of algorithms are inefficient, when the response variable dataset has a high amount of 

censored data. For instance linear programming algorithm (Koenker and D’Orey, (1987))[46] 

and others methods. Recently, (Yu and Stander, (2007))[] have proposed the Bayesian 

approach for estimating (Tobit QReg) even with high amount of censored Data. They were 

inspired by the suggestion of (Konker and Machado (1999))[48] and (Yu and Moyeed 

(2001))[]. These researchers observed convergence between loss function (3.4) and skew-

Laplace distribution (SLD) (asymmetric Laplace distribution). Therefore, the random error 

term 𝜀𝑖 distributed as SLD with probability density function (pdf), takes the following 

formula: 

 

  

𝑓(𝜀𝑖|𝜇, 𝜎, 𝜃) =
𝜃(1 − 𝜃)

𝜎
 exp−𝜌𝜃 {(

𝜀𝑖 − 𝜇

𝜎
)}                                                                      [3.6] 

If 𝜇 = 0 and 𝜎 = 1 then, the probability density function (pdf) to 𝜀𝑖 is: 

 

𝑓(𝜀𝑖|𝜎, 𝜃) = 𝜃(1 − 𝜃) exp(−𝜌𝜃{(𝜀𝑖)} )                                                                                [3.7] 

With mean, 𝐸(𝜀𝑖) =
1−2𝜃

𝜃(1−𝜃)
  and variance, var (𝜀𝑖) =

1−2𝜃+2𝜃2

𝜃2(1−𝜃)2
 

𝜌𝜃(. ) is the check(loss) function defined as in equation [3.7]. The joint distribution of 𝑦 =
(𝑦1, … , 𝑦𝑛)

𝑇 𝑔𝑖𝑣𝑒𝑛 𝑋 = (𝑥1, … , 𝑥𝑛)
𝑇 is:  

(𝑦|𝑋, 𝛼, 𝛽, 𝜎, 𝜃) = 𝜃𝑛(1 − 𝜃)𝑛𝑒𝑥𝑝 {−∑𝜌𝜃(𝑦𝑖 −𝑚𝑎𝑥{0, 𝛼𝜃 + 𝑥𝑖
𝑇𝛽𝜃 + 𝜀𝑖}

𝑛

𝑖=1

}            [3.8] 

where the likelihood function to the probability density function (pdf) of (SLD) with scale 

parameter equal one is: 

𝑓(𝑦|𝑋, 𝛼, 𝛽, 𝜎, 𝜃) = 𝜃𝑛(1 − 𝜃)𝑛𝑒𝑥𝑝 {−∑𝜌𝜃(𝑦𝑖 −𝑚𝑎𝑥{0, 𝛼𝜃 + 𝑥𝑖
𝑇𝛽𝜃 + 𝜀𝑖}

𝑛

𝑖=1

}          [3.9] 

 

Minimizing the equation [2.4] is equivalent to maximizing the likelihood function of the 

equation [3.9]. By using SLD directly, leads to hard computations, therefore (Kozumi and 

Kobayashi, (2011))[49] claimed the SLD can be reformulated as function scale mixture 

normal distribution. The likelihood function of equation [3.9] is possible to be rewritten as the 

following equation, according to suggestion of (Kozumi and Kobayashi) : 

                             𝑦𝑖=𝑚𝑎𝑥{0,𝑇𝑖∗} ,             𝑖=1,….,𝑛,   

𝑇𝑖
∗|𝛼𝜃, 𝛽𝜃,𝑚𝑖~𝑁(𝛼𝜃 + 𝑥𝑖

𝑇𝛽𝜃 + (1 − 2𝜃)𝑚𝑖, 2𝑚𝑖)                                                                [3.10] 

 

 

Under the proposed method of (Kozumi and Kobayashi, (2011))[49] , rewriting the SLD for 

the errors as a SMN  
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𝑓(𝑇𝑖
∗|𝛼𝜃, 𝑥𝑖

𝑇, 𝜃, 𝛽
𝜃
,𝑚𝑖) =

1

√4𝜋𝑚𝑖

𝑒
−(𝑇𝑖

∗−𝛼𝜃−𝑥𝑖
𝑇𝛽𝜃−(1−2𝜃)𝑚𝑖)

2

4𝑚𝑖  

 

The likelihood function of the probability density function (𝑓(𝑇𝑖
∗|𝛼𝜃, 𝛽𝜃,𝑚𝑖)) is  

𝑓(𝑇𝑖
∗|𝛼𝜃, 𝑥𝑖

𝑇, 𝜃, 𝛽
𝜃
,𝑚𝑖) = [

1

√4𝜋𝑚𝑖

]

𝑛

𝑒
−∑

(𝑇𝑖
∗−𝛼𝜃−𝑥𝑖

𝑇𝛽𝜃−(1−2𝜃)𝑚𝑖)
2

4𝑚𝑖
                              𝑛

1                [3.11] 

where 𝑚𝑖 is distributed experiential distribution with rate parameter 𝜃(1 − 𝜃). The equation 

[3.19] is an important part for constructing Gibbs samplers of posterior distributions for 

coefficient estimates of Tobit quantile regression model. 

 

3.2.2. Bayesian Hierarchical of Prior Distributions 

(Park and Casella (2008))[60], implement the Bayesian Lasso in traditional regression model 

by assigning Laplace priors for regression coefficients. Where, the Laplace distribution has 

the probability density function with 𝜎 = 1 as below:  

𝑓(𝛽𝑗|𝜆) =
𝜆
2⁄  𝑒−𝜆|𝛽𝑗|                                                                                                                   [3.12] 

 

where 𝜆 is the shrinkage parameter and (𝜆 ≥ 0). 
More researchers discussed Bayesian regularized Tobit quantile regression. For instance, 

(Yue and Hong 2012))[73], proposed Bayesian Tobit QReg with the group Lasso penalty, 

(Alhamzawi, (2013))[4], proposed the adaptive Lasso in Tobit QReg by using Bayesian 

technique. Also (Alhamzawi, (2014))[3] proposed a Bayesian elastic net penalty in Tobit 

QReg. Where most last methods using another picture from Laplace prior is a Scale Mixture 

Normal (SMN), according to (Andrews and Mallows (1974))[5]. It takes following manner: 

λj

2
 e−λj|βj| = ∫

1

√2πsj

∞

0
e
(−

βj
2

2sj
)
 
λj
2

2
e
(−

s
jλj
2

2
)

dsj             Hence, Laplace prior can be rewritten as a 

function from two parts. The first part can be assigned to prior distribution for 𝛽𝑗,which 

distributes normally with mean zero and variance (𝑠𝑗) as follows: 

 

𝑝(𝛽𝑗|𝑠𝑗) =
1

√2𝜋𝑠𝑗
𝑒𝑥𝑝 {−

𝛽𝑗
2

2𝑠𝑗
}                                                                                                  [3.13] 

 

where 𝛽𝑗  unknown variance is 𝑠𝑗 . The exponential prior for 𝑠𝑗   takes the form of: 

 

𝑝(𝑠𝑗|𝜆𝑗)  ∝  
𝜆𝑗

2
 𝑒𝑥𝑝 {−

𝑠𝑗𝜆𝑗
2
}                                                                                                        [3.14]    

In this chapter , we will use another formula of the prior Laplace distribution which is Scale 

Mixture Uniform (SMU) in Tobit quantile regression model for implementing the coefficients 

estimation and variables selection.  Where, the Laplace prior of 𝛽𝑗 coefficients in equation  

[3.14] is written as follows: 

   

𝜆

2
𝑒{−𝜆|𝛽𝑗|} = ∫

1

2𝑢𝑗
 
𝜆2

Γ(2)

∞

𝑠𝑗>|𝛽𝑗|

  𝑢𝑗
2−1 𝑒𝑥𝑝{−𝜆𝑢𝑗} 𝑑𝑢𝑗    ,    

= ∫
1

2𝑢𝑗
 
𝜆2

Γ(2)

∞

|𝛽𝑗|

  𝑢𝑗
2−1 𝑒𝑥𝑝{−𝜆𝑢𝑗} 𝑑𝑢𝑗                                                                                   [3.15]   
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Also equation  [3.15] can be rewritten as a function from two parts. The first part is assigned 

to prior uniform distribution for 𝑢𝑗 , and the second part belongs to a Gamma distribution with 

shape parameter (2) and scale parameter (𝜆), where 𝜆 has Gamma prior with parameters 

(𝑎, 𝑏). This parameter is necessary for coefficient shrinkage. The prior distribution of 𝛼𝜃 is 

assigned to standard uniform prior . (𝑎, 𝑏), are fixed hyperparameters are take initial values. 

From the above information , our Bayesian hierarchical Tobit quantile regression model can 

be summarized as follows: 

 

 

𝑦𝑖=𝑚𝑎𝑥{0,𝑇𝑖∗} ,             𝑖=1,….,𝑛,, 

𝑇𝑖
∗|𝛼𝜃, 𝛽𝜃, 𝑧𝑖~𝑁(𝛼𝜃 + 𝑥𝑖

𝑇𝛽𝜃 + (1 − 2𝜃)𝑚𝑖, 2𝑚𝑖), 

𝑝(𝛼𝜃) ∝ 1, 

𝑚𝑖~𝐸𝑥𝑝 (𝜃(1 − 𝜃)), 

𝛽𝑗|𝑢𝑗~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−𝑢𝑗 , 𝑢𝑗), 

𝑢𝑗|𝜆 ~𝑢𝑗
2−1exp (−𝜆𝑢𝑗), 

𝜆~𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏), 

[1] 

 

3.2.3: The Conditional Posterior Distributions Inference 
 

The condition posterior distribution  is produced from multiplying equation  [3.12] and the set 

of equation  [3.16] . It is a the probability distribution for each parameters of model.   In this 

chapter constructing the Gibbs sampler depends on the following: 

The conditional posterior distribution of variable (𝑇𝑖
∗) is distributed truncated normal 

distribution which is given by: 

𝑇𝑖
∗|𝑦𝑖, 𝑥𝑖 , 𝑚𝑖, 𝛼𝜃, 𝛽𝜃~ {

𝛾(𝑦𝑖)                                                  𝑖𝑓 𝑦𝑖  > 𝑜                            [1.20]

𝑁(𝛼𝜃 + 𝑥𝑖
𝑇𝛽𝜃 + (1 − 2𝜃)𝑚𝑖 , 2𝑚𝑖)𝐼(𝑇𝑖

∗ ≤ 0) otherwise              
 

where 𝛾(𝑦𝑖) is degenerate distribution. The full conditional posterior distribution of 𝛼𝜃  is 

normal distribution with mean equal (∑
(𝑇𝑖
∗−𝑥𝑖

𝑇𝛽𝜃−(1−2𝜃)𝑚𝑖)

2𝑚𝑖

𝑛
𝑖=1 ) and variance equal 

(∑ (
1

2𝑚𝑖
)𝑛

𝑖=1 ). Also, the full conditional posterior distribution of 𝑚𝑖 is inverse Gaussian with 

mean √
𝟏

(𝑇𝑖
∗−𝛼𝜃−𝑥𝑖

𝑇𝛽𝜃)
𝟐  and shape parameter (

𝟏

𝟐
). And the full conditional posterior distribution 

of 𝛽𝑗 is truncated normal with mean 𝜎2́ ∑
 𝑥𝑖𝑗(𝑇𝑖

∗−(1−2𝜃)𝑚𝑖−∑ 𝑥𝑖𝑗
𝑝
𝑗=1,𝑗≠𝑘 𝛽𝑗)

2𝑚𝑖

𝑛
1  Ι[|𝛽𝑗| < 𝑢𝑗] and 

variance 𝜎2́ = (∑
𝑥𝑖𝑗

2

2𝑧𝑖

𝑛
1 )

−1

. The full conditional posterior distribution of 𝑢𝑗  is left-truncated 

exponential with rate parameter(𝜆). The full conditional posterior distribution of  𝜆 is a 

Gamma distribution with rate parameter (𝑎 + 2𝑝) and scale parameter(𝑏 + ∑ |𝛽𝑗|
𝑝
𝑗=1 ). 

 Where a,b are hyperparameters which are take initial values. Our Bayesian hierarchical 

posteriors will generate an attractive MCMC algorithm for our proposed method new 

Bayesian Lasso Tobit quantile regression (New B L Tobit Q Reg).  

3.3: Chapter Conclusions 
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In this chapter, we propose a new Bayesian Lasso Tobit quantile regression method for 

variable selection and coefficients estimation in Tobit Q Reg model through assigning a prior 

independent scale-mixture of uniform (SMU) distributions for the regression coefficients. 

Then, a simple and efficient MCMC algorithm has been presented. Simulation studies and a 

real data set are used to investigate the performance of the proposed method compared to 

some other existing methods. Both simulated and real data examples show that the proposed 

method performs quite well compared to the other methods at  a variety of scenarios. 
 

Chapter Four 

Bayesian Composite Tobit Quantile Regression 

4.1: Introduction  

Since the seminal work of (Powell (1986))[59], Tobit QReg (Tobit QReg) has received 

considerable attention in recent literature as well as numerous practical applications in a 

number of fields such as Econometrics, biological sciences, finance and medicine. A large 

body of work exists on classical estimation for Tobit QReg and we refer to (Hahn 

(1995))[33], (Buchinsky and Hahn (1998))[8], (Bilias et al. (2000))[9] and (Chernozhukov 

and Hansen (2008))[17] for a comprehensive review. The Tobit Q Reg model offers an active 

way of coping with left-censored data, and can be viewed as a linear Q Reg model where only 

the data on the response variable is incompletely observed. One of the attractions of Tobit 

QReg over its standard Tobit regression counterpart lies in its flexibility in providing a more 

complete description of the functional changes than focusing solely on the center of the 

distribution. Given the linear latent variable model, 

 

𝑇𝑖
∗ = 𝛼 + 𝑥𝑇𝛽 + 𝜀𝑖,            𝑖 =  1, …… . , 𝑛                                                                                  [4.1] 

 

where 𝛼 is the intercept ,𝑥𝑖 = (𝑥1, …… . 𝑥𝑘)
𝑇 , 𝛽 = (𝛽1, ……𝛽𝑘)

𝑇 and 𝜀𝑖 are independent with 

their 𝜃𝑡ℎ quantiles to 0 and distribution function F. Powell  noted that if we observe 𝑦𝑖 =
𝑚𝑎𝑥{𝑐, 𝑇𝑖

∗}, where c is a known censoring point, then the conditional quantile functions, 

𝑄𝑦𝑖|𝑥𝑖
(𝜃|𝑥𝑖) = 𝛼𝜃 + 𝑥𝑖

𝑇𝛽𝜃                                                                                                             [4.2] 

can be estimated consistently by the solution to the following minimization problem, 

  ∑ 𝜌𝜃
𝑛
𝑖=1𝛼𝜃,𝛽𝜃

𝑚𝑖𝑛  (𝑦𝑖 −𝑚𝑎𝑥{𝑐, 𝛼𝜃 + 𝑥𝑖
𝑇𝛽𝜃})                                                                                  [4.3]  

where 𝜌𝜃(𝑡) = 𝑡(𝜃 − 1𝑡≤0) is so called the check function of (Koenker and Bassett 

(1978))[38] at a quantile 𝜃𝜖(0,1) and 1 is the indicator function.  It is well known that the 

asymptotic theory for Q Reg models have been well developed (Koenker, ((2005)[42]. 

However, inference for these models is difficult, especially for censored data (Reich et al., 

(2010))[61]. In contrast, a Bayesian framework enables exact inference, even when n is small 

and is well suited to incorporate censored data. Because the check function (4.3) is closely 

related to the skewed Laplace distribution (SLD) (Koenker and Machado, (1999))[48]; (Yu 

and Moyeed, (2001))[], (Yu and Stander (2007))[] proposed a Bayesian method for analyzing 

QReg model for censored data using the SLD for the errors. (Ji et al (2012))[37] studied the 

problem of variable selection in Tobit Q Reg via Gibbs sampler based on the scale-mixture 

expression in (Kozumi and Kobayashi (2011))[49]. (Kobayashi and Kozumi (2012))[51] 

considered Bayesian analysis of QReg for censored dynamic panel data. (Alhamzawi and Yu 

(2015))[] proposed a Bayesian approach for variable selection and coefficient estimation in 

TQReg model using g-prior distribution with ridge parameter and (Alhamzawi (2014))[3] 

proposed a Bayesian approach for Tobit Q Reg with the elastic net penalty. The 

aforementioned methods for modeling TQReg focus on a single quantile level. However, for a 

given distribution, the efficiency of TQReg estimators depends on the quantile level. Because 
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the distribution is unknown, it is difficult to select the most informative quantile which can 

provide an efficient estimator. 

In the context of quantile regression, (Zou and Yuan (2008))[76] showed that when the errors 

are independently and identically distributed, composite Q Reg (regression at multiple 

quantiles) offers a more efficient estimator than the estimator obtained using Q Reg at a single 

quantile level. The authors showed that the relative efficiency of composite Q Reg compared 

to the OLS is greater than 70% regardless the distribution of residuals. (Bradic et al. 

(2011))[12] proposed a robust and efficient penalized composite quasi-likelihood method for 

ultrahigh dimensional variable selection. (Kai et al. (2010))[47] proposed a local linear 

composite estimator for estimating the nonparametric regression function, and (Zhao and 

Xiao (2014))[77] considered a weighted composite QRegand proved its oracle properties. 

(Huang and Chen (2015))[34] proposed a Bayesian formulation of composite QRegusing the 

asymmetric Laplace distribution for the errors and sampling the regression coefficients from 

its posterior using a Gibbs sampler . In the current chapter, we propose a Bayesian approach 

for composite Tobit QReg (Composite Tobit QReg). The approach is illustrated via 

simulation studies and a real data set. Results show that combine information across different 

quantiles can provide a useful method in efficient statistical estimation. Based on the 

simulation studies and real data analysis, we argue that it is necessary to combine quantile 

information based on estimators at different quantiles to achieve efficiency gain. 

4.2: The  proposed method 

4.2.1: Bayesian formulation of the CompositeTobit QReg 

Consider 𝐻 different quantiles ,0 < 𝜃1 < 𝜃2 < ⋯ < 𝜃𝐻 < 1 Let 𝑦𝑖 = 𝛼 + 𝑥𝑖
𝑇𝛽 + 𝜀𝑖 for 𝑖 =

1, … . . , 𝑛  𝑎𝑛𝑑 ℎ = 1,… . . , 𝐻,. Then, the composite QReg(Zou and Yuan,(2008))[76] is given 

by 

(�̂�1, �̂�2, … , �̂�H, �̂�) =   ∑ {∑ 𝜌𝜃ℎ (𝑦𝑖 − 𝛼ℎ + 𝑥𝑖
𝑇𝛽)𝑛

𝑖=1 }𝐻
ℎ=1 ,                                 [4.4]𝛼1……𝛼2,𝛽        

𝑀𝑖𝑛             

Where 𝜌𝜃ℎ(𝑡) = 𝑡(𝜃ℎ − 1𝑡≤0), 𝜃ℎ =
ℎ

𝐻+1
𝑓𝑜𝑟 ℎ = 1,… . , 𝐻. 

Next, assume that 𝑇𝑖
∗ = 𝛼 + 𝑥𝑇𝛽 + 𝜀𝑖 and 𝑦𝑖 = 𝑚𝑎𝑥{𝑐, 𝑇𝑖

∗}. We propose composite Tobit 

QReg which solves the following: 

(�̂�1, �̂�2, … , �̂�H, �̂�) =   ∑ {∑𝜌𝜃ℎ (𝑦𝑖 −max (𝑐, 𝛼ℎ + 𝑥𝑖
𝑇𝛽)

𝑛

𝑖=1

}

𝐻

ℎ=1

,                        [4.5]𝛼1……𝛼2,𝛽        
𝑀𝑖𝑛            

 

Although Equation (4.5) is not differentiable at 0, the minimization can be achieved through 

some modifications to algorithm proposed by (Koenker and D’Orey (1987))[46]. However, 

this algorithm might be inefficient at lower quantiles of left censored data. In this paper, to 

estimate the Composite Tobit QReg parameters, a Bayesian method is considered and a new 

Gibbs sampler is proposed for posterior inference. 

 Now, if we assume 𝜀𝑖 being independent and identically distributed random variables from 

the SLD where the density function of the SLD with a scale parameter of 1 is 

𝑓(𝜀|𝜃𝑚) = 𝜃𝑚(1 − 𝜃𝑚)𝑒𝑥𝑝{−𝜌𝜃𝑚(𝜀)}.                                                                                   [4.6] 

Then the joint distribution of 𝑦 = (𝑦1, … , 𝑦𝑛)
𝑇 𝑔𝑖𝑣𝑒𝑛 𝑋 = (𝑥1, … , 𝑥𝑛)

𝑇,𝛼 =
(𝛼1, … . 𝛼ℎ)

𝑇 𝑎𝑛𝑑 𝛽 = (𝛽1, … . 𝛽𝑘)
𝑇 for composite Tobit QReg is  

𝑓(𝑦|𝑋, 𝛼, 𝛽) =∏𝜃ℎ
𝑛(1 − 𝜃ℎ)

𝑛𝑒𝑥𝑝 {−∑𝜌𝜃ℎ(𝑦𝑖 −𝑚𝑎𝑥{𝑐, 𝛼ℎ + 𝑥𝑖
𝑇𝛽}

𝑛

𝑖=1

}                      [4.7]

𝐻

ℎ=1

 

Hence, minimizing Equation (4.5) is equivalent to maximizing the likelihood function of the 

censored response 𝑦𝑖  (4.7). It is worth pointing out that assuming SLD for 𝑦𝑖 is merely an 
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articial assumption used to achieve the possible parametric connection between the 

minimization in Equation (4.5) and the maximum likelihood theory (Yu et al., (2013))[]; 

(Benoit et al.,(2013))[13]. It is very difficult to solve Equation (5) directly because of the 

mixture of H components. Following (Huang and Chen (2015))[34],  

we use a cluster assignment matrix 𝐶 whose (𝑖, ℎ)𝑡ℎelement 𝐶𝑖ℎ is equal to 1 if the 𝑖𝑖𝑡 subject 

belongs to the ℎ𝑡ℎ cluster, otherwise 𝐶𝑖ℎ = 0. The element 𝐶𝑖ℎ is treated as missing values. 

Thus, our likelihood takes the form 

of 

𝑓(𝑦|𝑋, 𝛼, 𝛽) =∏∏[𝜃ℎ(1 − 𝜃ℎ)𝑒𝑥𝑝{𝜌𝜃ℎ(𝑦𝑖 −𝑚𝑎𝑥{𝑐, 𝛼ℎ + 𝑥𝑖
𝑇𝛽}) }]

𝐶𝑖ℎ

𝑛

𝑖=1

𝐻

ℎ=1

                [4.8] 

Recently, (Kozumi and Kobayashi (2011))[49] demonstrated that the distribution of the SLD 

can be reformulated as a mixture of normal distributions. For our Bayesian composite Tobit Q 

Reg, the formulation of (Kozumi and Kobayashi (2011))[49] can be written as: If 

𝑦𝑖|𝛼𝑚, 𝛽, 𝑧𝑖  ~𝑁𝑜𝑟𝑚𝑎𝑙 (𝑚𝑎𝑥{𝑐, 𝛼ℎ + 𝑥𝑖
𝑇𝛽} + (1 − 2𝜃ℎ)𝑚𝑖, 2𝑚𝑖) ,  

𝑚𝑖~𝐸𝑥𝑝(𝜃ℎ(1 − 𝜃ℎ))                                                                                                                [4.9] 

𝑓(𝑇𝑖
∗|𝛼ℎ, 𝛽, 𝑧𝑖) =  ∏

1

√4𝜋𝑚𝑖

 𝑒
1
2
∑ ∑

𝑐𝑖ℎ (𝑇𝑖
∗−𝛼ℎ−𝑥𝑖

𝑇𝛽−(1−2𝜃ℎ)𝑚𝑖)
2

2𝑧𝑖
𝐻
ℎ=1

𝑛
𝑖=1

𝑛

𝑖=1

 

Where 𝑚𝑖   are independent ,then marginalizing over 𝑚𝑖  gives us  

𝑦𝑖|𝛼ℎ, 𝛽~𝑆𝐿𝐷(𝑚𝑎𝑥{𝑐, 𝛼ℎ + 𝑥𝑖
𝑇𝛽}, 1, 𝜃ℎ .Under this formulation, the composite Tobit Q Reg 

coefficients  has desirable conditional conjugacy features for building a tractable and efficient 

Gibbs sampler algorithm for fitting the model to the data. 

4.2.2. Prior Specification 

To proceed a Bayesian analysis, we specify a uniform prior distribution for 𝛼𝑚, 𝑝(𝛼𝑚) ∝ 1. 

We assign a zero mean normal prior distribution for 𝛽𝑗 taking the form of   

𝑝(𝛽𝑗|𝑠𝑗) =
1

√2𝜋𝑠𝑗
𝑒𝑥𝑝 {−

𝛽𝑗

2𝑠𝑗
},                                                                                                [4.10]  

where 𝑠𝑗  is the unknown prior variance of 𝛽𝑗 .Then we assign an exponential prior on 𝑠𝑗   takes 

the form of . 

𝑝(𝑠𝑗|𝜆𝑗) ∝  
𝜆𝑗

2
 𝑒𝑥𝑝 {−

𝑠𝑗𝜆𝑗

2
},                                                                                                  [4.11]    

where 𝜆𝑗 is unknown hyperparameter. Since (10) involves a zero mean Gaussian prior for the 

components of 𝛽 with unknown variances, these components are shrunk. The degree of 

shrinkage is controlled by the prior variance 𝜆𝑗,𝑗 = 1,… , 𝑘.. This two-level prior can provide 

adaptive regularization of weights for the composite Tobit QReg parameters 𝛽 and  represent 

an alternative model to the Bayesian Lasso model. We further put a gamma prior on  𝜆𝑗 as 

 

𝑝(𝜆𝑗|𝑎, 𝑏) ∝ 𝜆𝑗
𝑎−1𝑒𝑥𝑝{−𝑏𝜆𝑗},                                                                                             [4.12] 

where 𝑎 𝑎𝑛𝑑 𝑏 are two fixed hyperparameter. Following (Li et al. (2010))[2010] and Hashem 

et al. (2015), we set 𝑎 and 𝑏 as small values (𝑎 = 0.1 and 𝑏 = 0.1) so that the prior for 𝜆𝑗 is 

essentially non-informative . To summarize, our Bayesian hierarchical model given by 

𝑦𝑖=𝑚𝑎𝑥{𝑐,𝑇𝑖
∗} ,             𝑖=1,….,𝑛,  
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𝑇𝑖
∗|𝛼ℎ, 𝛽, 𝑧𝑖~[𝑁(𝛼ℎ + 𝑥𝑖

𝑇𝛽 + (1 − 2𝜃ℎ)𝑚𝑖, 2𝑚𝑖)]
𝑐𝑖ℎ ,  

𝑝(𝛼ℎ) ∝ 1                                                                                                                  [4.13] 

𝑚𝑖~𝐸𝑥𝑝 (𝜃ℎ(1 − 𝜃ℎ)) , 

𝛽𝑗~𝑁(𝑠𝑗)  

𝑠𝑗~𝐸𝑥𝑝 (
𝜆𝑗

2
),  

𝜆𝑗 ∝ 𝜆𝑗
𝑎−1𝑒𝑥𝑝{−𝑏𝜆𝑗}.  

4.2.3 Posterior Computation Inferences 

Therefore the hierarchical model to composite Tobit Q Reg model with Lasso penalty are: 

The full conditional posterior distribution of latent variable (𝑇𝑖
∗) is given by  

𝑇𝑖
∗|𝑦𝑖, 𝑚𝑖 , 𝛼ℎ, 𝛽~{

{Υ(𝑦𝑖),                                                                                          𝑖𝑓 𝑦𝑖 > 𝑐;

{∏ [𝑁(𝛼ℎ + 𝑥𝑖
𝑇𝛽 + (1 − 2𝜃ℎ)𝑚𝑖, 2𝑚𝑖)]

𝑐𝑖ℎ
𝐻

ℎ=1
} 𝐼(𝑇𝑖

∗ ≤ 𝑐), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   [1.28] 

where 𝑐  is equal zero  and Υ(𝑦𝑖)  denoted to a degenerate distribution. The full conditional 

posterior distribution of m𝑖 for 𝑖 = 1,… , 𝑛, is the Inverse Gaussian with mean 

√∑ 𝐶𝑖ℎ (𝑇𝑖 − 𝛼ℎ − 𝑥𝑖
𝑇𝛽)2)⁄𝐻

ℎ=1   and shape parameter ∑ 𝐶𝑖ℎ 2⁄𝐻
ℎ=1  . The full conditional 

posterior distribution of αh is normal distribution with mean 

(�̃�ℎ
2∑ 𝐶𝑖ℎ

𝑛
𝑖=1 (𝑇𝑖

∗ − 𝑥𝑖
𝑇𝛽 − (1 − 2𝜃ℎ)𝑚𝑖) 2𝑚𝑖⁄ ) and variance (∑ (𝐶𝑖ℎ 2𝑚𝑖)⁄𝑛

𝑖=1 )−1. The full 

conditional posterior distribution of 𝛽𝑗[j=1, 2,….k] is normal distribution with mean 

(�̃�𝑗
2∑ ∑ 𝐶𝑖ℎ𝑥𝑖𝑗(𝑦𝑖 −

𝑛
𝑖=1

𝐻
ℎ=1 𝛼ℎ − ∑ 𝑥𝑖𝑙𝛽𝑙 − (1 − 2𝜃ℎ𝑙≠𝑗 )𝑚𝑖) (2𝑚𝑖)⁄ ) and variance 

(�̃�𝑗
2= (∑ ∑ 𝐶𝑖ℎ

𝐻
ℎ=1

𝑛
𝑖=1 𝑥𝑖𝑗

2 2𝑚𝑖⁄ ) + 𝑠𝑗
−1)−1). The full conditional posterior distribution of 

si
−1[j = 1,2, ……k]is the inverse Gaussian with mean √𝜆𝑗 𝛽𝑗

2⁄    and shape parameter𝜆𝑗. The 

full conditional posterior distribution of 𝜆𝑗 is gamma distribution with shape parameter (𝑎 +

1) and scale parameter (𝑏 +
𝑠𝑗

2
). The full conditional posterior distribution of  Ciℎ =

(Ci1,Ci2,…… , CiH)
T is a multinomial distribution; 𝑝(𝐶𝑖|𝑦, 𝑋, 𝛼, 𝛽, 𝑧) ∝

multinomial(1, p̂1, … . , p̂H),    where p̂H =
exp[−(yi−αh−𝑥𝑖

𝑇𝛽−(1−2𝜃ℎ)𝑚𝑖 2mi⁄ ]

∑ expH
h=1 [−(yi−αh−𝑥𝑖

𝑇𝛽−(1−2𝜃ℎ)𝑚𝑖 2mi⁄ ]
 . From the full 

conditional posterior distributions are show in above formulas, we will obtain a simple and 

efficient Gibbs sampler algorithm. Our algorithm was run for 16,000 iterations and the first 

1000 were removed as burn in. Then, we think the subsequent iterations by keeping every 5th 

simulation draw and discarding the rest. 

4.3: Chapter Conclusion 

 

Composite Q Reg models have been shown to be effective techniques in improving the 

prediction accuracy (Zou and Yuan, (2008))[76]; (Bradic et al.,( 2011))[12]; (Zhao and Xiao, 

2014))[77]. In this chapter, we developed a simple and efficient MCMC based computation 

technique for composite Tobit quintile regression model based on a mixture of an exponential 

and a scaled normal distribution of the skewed Laplace distribution. Simulation studies show 

that our proposed method is effective in coefficient estimation under different distributions. 

Based on the simulation studies and real data analysis, we argue that it is necessary to 
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combine quantile information based on estimates at different quantiles to achieve efficiency 

gain. 

 

 

 

Chapter Five 

Analysis of Factors Affecting Iraqi Banks' Investments by Using a New Bayesian 

Lasso Tobit Q Reg Model and Bayesian Composite Tobit Q Reg model 

5-1 : Introduction  

Banking investments are considered one of the financial resources for achieving high profit in 

the future. Some banks invest part of their funds in various economic projects via diverse 

banking investments, while some banks do not have any activity in banking investments. 

Banking investments are one of the most important banking advantages (Fohlin, C: 

(2014))[22]; (White, E. N: (1986))[70]. All banks are seeking to reach the highest possible 

return of investments under reduced risks. Banks are looking to invest by purchasing 

securities with the highest return and the lowest risk. The investments of the Iraqi banks were 

of 4.8 trillion Iraqi dinars at the end of 2013. These banking investments are distributed into 

two parts: the first part represents investments in Iraqi markets reaching 3.1 trillion Iraqi 

dinars, and the second part represents investments in foreign markets reaching 1.7 trillion 

Iraqi dinars. The state-owned banks invested 1.9 trillion Iraqi dinars in Iraqi markets and 1.4 

trillion Iraqi dinars in foreign markets. Private banks invested 1.2 trillion Iraqi dinars in Iraqi 

markets and 254.5 billion Iraqi dinars in foreign markets. The total of banking investments in 

Iraqi and foreign markets were 4.8 trillion Iraqi dinars which contributed with 1.8% to the 

gross domestic product (Iraq Central Bank (2013))[36].  

The present work aims to analyze the influence of certain variables on the Iraqi banks' 

investments. These variables are: banking deposits, banking profits, bank capital, bank 

reserves, banking loans, advertising expenses, age of the bank, number of bank branches, bad 

debt. These variables have impact and relative importance in Iraqi banks' investments. In the 

current study, the response variable (Iraqi banks' investments) is censored response variable 

from left side at zero. Therefore, the Tobit regression model (Tobit Reg model) is considered 

more adaptable with censored response data. Nevertheless, our data have a set of problems, 

such as: (a) the distribution of banking investments data are skewed to right side; (b) the 

banking investments data have a big gap between the smallest value and the largest value - 

therefore, our data contain much outlier values, etc. Due to these problems, the Tobit Reg 

model is no longer appropriate with our data. In order to overcome these problems, the Tobit 

quantile regression (Tobit Q Reg) model has been used. Additionally, Tobit Q Reg gives us a 

complete information of the relationship between Iraqi banks investments and a set of 

independent variables.  In this thesis, we used a new Bayesian Lasso in Tobit quantile 

regression model for describing the relationship between censored response variable (Iraqi 

bank investments) and a set of independent variables, and also to identify the relative 

importance for these independent variables in studied models via thirty Tobit quantile levels. 

Also we use the Bayesian composite Tobit quantile regression model to assess the 

relationship between the censored response variable (Iraqi bank investments) and a set of 
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independent variables, and also to identify the relative importance for these independent 

variables in composite Tobit Q Reg via six groups of Tobit quantile levels.  

 

 

 

5.2- Brief Explanation about all Banks Active in Iraq 

In this part, we detail the number and types of banks active in Iraq. This sector has witnessed 

a growth in number of banks which increased from 10 to 47 at the end of 2013. The banks 

active on the Iraqi market are divided into three types, as follows: 

5.2.1: State-Owned Banks: 

There are 47 banks active in Iraq including 7 state-owned banks. These banks are Al-Rashid 

Bank, Rafidain Bank, Commercial Bank of Iraq, Industrial Bank of Iraq, Agricultural 

Cooperation Bank, Real Estate Bank and the Iraqi Bank.  

5.2. 2: Private Banks 

Starting with the first of October 2006, the number of private banks active in Iraq has become 

25 banks. All these banks have a license from the Iraqi Central Bank. The number of Iraqi 

private banks were 18 banks until late 2003. They began their activity in the early 1990s. At 

the end of December 2013, the number of private banks active in Iraq increased to thirty 

(Dunia report (2014))[18].  

5.2. 3: Foreign Banks 

A foreign banks are obligated to implement the laws and regulations of both the homeland 

state and the host state (Nasr, S et al. (2011))[57]. The foreign banks provide to Iraqi 

customers a set of banking service such as, banking loans and banking deposits etc. At the 

end of 2013, the number of a foreign banks reached ten banks  

5.3: Study Sample and Mathematical Model  

The data were extracted from the report of the Central Bank of Iraq (2013). The sample size is 

47 observations (the number of banks active in Iraq). In the current study, the sample contains 

one response variable which is the Iraqi banks' investments. It can either take positive 

quantities, when the banks have investments activity or can be zero, when these banks haven't 

any investment activity. This means, that the response variable (Iraqi banks' investments) will 

be left censored at (zero). The banks’ investments are affected by a set of variables, directly or 

indirectly. To evaluate the relationship between the response variable and a set of independent 

variables statistical methods are employed. In the current study, the response variable is being 

censored at zero point. Therefore, the more appropriate model is a Tobit regression model. 

But to obtaining the entire coverage of the full relationship distribution between the response 

variable (Iraqi banks’ investments) and a set of independent variables we will use the Tobit 

quantile regression model at a specific Tobit quantile levels (determined by researcher). Also, 

we will use a composite Tobit quantile regression model. Therefore, the mathematical model 

for the current study takes the following formula: 

 

𝑦𝑖 = max(0, 𝑇𝑖
∗),𝑇𝑖

∗ = 𝛼 + 𝛽1𝜃𝑥1𝑗 + 𝛽2𝜃𝑥2𝑗 + 𝛽3𝜃𝑥3𝑗 + 𝛽4𝜃𝑥4𝑗 + 𝛽5𝜃𝑥5𝑗 + 𝛽6𝜃𝑥6𝑗 +

𝛽7𝜃𝑥7𝑗 + 𝛽8𝜃𝑥8𝑗 + 𝛽9𝜃𝑥9𝑗 + 𝑢𝑖𝜃                                               𝑗=1,2,…….47 

where θ is a value belonging to the open interval (0,1). So, there are an infinite of Tobit 

quantile levels. In the current study, we assess the relationship between censored response 

variable and a set of independent variables by two methods: new Bayesian Lasso in Tobit Q 

Reg at thirty Tobit quantile levels and Bayesian composite Tobit  Q Reg at six groups of 

Tobit quantile levels. The assessment is done in two steps: first the coefficients estimation of 
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the models by two methods, and second, the computation of relative importance to 

independent variables also by two methods. 

 

5.3.1: The Independent Variables  

5.3.1.1. 𝑥1 Banking Deposits 

A deposit is the amount of money placed by the owner into a banking institution, representing 

the liability owed by the bank to the customer. Usually, the amounts can be kept in current 

accounts, savings accounts, time deposit accounts, call deposits or any other form of account 

that allows the customer access to the funds. The bank uses the deposited amounts to finance 

the banking loans it grants to customers.  

5.3.1. 2.  𝒙𝟐  Banking Profits 

Financial institutions carry a key role within the financial sector in the economy of countries. 

Thus, the banking system maintains a wide range of financial products and services to 

potential customers. Functioning financial institutions imply that banks obtain profits from 

running their operations. Mainly, a bank can profit in case the expenses are lower than the 

earnings. The earnings of banks originate from fees, commissions and interest paid by 

customers from using the services of the bank (its assets). Such assets are banking loans 

granted to private individuals or businesses. In return, the bank pays interest on liabilities, 

such as the bank’s deposits or banking loans from other banks.  

5.3.1. 3. 𝒙𝟑 Banking Capital  

The capital of the bank is the difference between a bank's assets and its liabilities. Higher 

capital indicates that the bank can survive unexpected losses, and following the 2008 financial 

crisis, the capital of the banks has been followed more closely. The crises revealed some 

regulation flaws regarding banks’ capital, which have since then been included in the Basel III 

accord. Basel III aims to increase stability and transparency of the banks. The main change is 

tightening capital requirement for banks by increasing liquidity. Capital is supposed to have a 

negative impact on profitability – the higher the capital of a bank is, the lower the 

profitability. However, the work of Osborne, Fuertes and Milne demonstrates that the 

relationship between capital and profitability is fluctuating according to market conditions 

(Hala Hijazi, (2017))[35]. Therefore, the size of the banking capital depends on the economic 

situation of the country. After 2003, Iraq has recovered economically, so Iraqi banks must 

increase their banking capital, for meeting the requirements of activity in an economic 

environment.  

5.3.1. 4. 𝒙𝟒 Bank Reserves 

Banking reserves are amounts deposited with the central bank or internally by the banks in 

their vaults. Minimum reserves requirements levels are established by central banks based on 

the balance sheet of the bank. The funds need to be deposited for a certain period of time, 

called the maintenance period and at the end of the maintenance period, the central bank pays 

to banks the interest for the amount deposited. 

 5.3.1. 5. 𝒙𝟓 Banking Loans  

A loan is a debt provided by the bank to the borrower based on a contract stating the loan 

conditions – the principal of the loan (the amount lent to the borrower), the interest rate paid 

by the borrower, date of repayment. From the banks’ point of view, banking loans bring the 

most profit (the interest rate paid by the borrower). They also imply costs  primarily there are 

the cost of funds at the time the loan is made, loan administration costs (loan analysis and 

execution fees), risk costs. However, banks tend to reduce the charges of a loan due to 

stronger competition or to underestimated risks related to banking loans.  

5.3.1. 6. 𝒙𝟔 Advertising Expenditures 
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Some banks depend on advertising for attracting customers, especially newer banks. Some 

older banks support various television programs as social responsibility (Ors, E. (2006))[58]. 

This variable is measured by the amount of advertisement expenses,  

 

5.3.1. 7. 𝒙𝟕 Age of The Bank 

The oldest surviving bank was established in Europe, in 1472. This proves the continuity of 

financing institutions over a very long period of times. While in the modern world, the 

distinction between old banks and new banks is not significant, there are psychological 

reasons that may influence customers as well as partners to choose a bank over another based 

on their age – an older bank may seem more experienced and trustworthy for customers with 

lower innovation needs and expectations (Ikechukwu, I. O et al., (2016))[19], while newer 

banks may seem more flexible and more willing to incorporate new technologies into their 

products and services. Measuring this variable depends on the number of years since the 

beginning of banking activity until 31st December 2013.  

5.3.1.8. 𝒙𝟖 Number of Bank Branches 

The number of bank branches has significant impact in various aspects of the bank’s activity. 

As examined in the work of De (Haan and Poghosyan, (2012))[] one of the main aspects 

identified is the bank’s products and services offer  large banks tend to have more diversified 

offer than smaller banks. Also, larger banks are more risk-inclined, as their size prevents them 

from failing 

5.3.1. 9. 𝒙𝟗 : Bad Debt 

Bad debt represents the amount owed by the customer to the bank which is unlikely to be paid 

back or for which the collecting costs are higher than the actual amount owed. Bad debt 

results mainly from nonperforming banking loans (NPL). The definition of a nonperforming 

loan can vary, but it is mainly a loan for which the debtor has not made any payments for a 

certain period. After this period, the possibility of the loan being repaid is very low.  

5.4 - New Bayesian Lasso in Tobit  Q Reg: 

We will use our proposed methods of New Bayesian Lasso Tobit  Q Reg in two directions: 

the coefficients estimation and variable selection via thirty Tobit quantile levels. 

 5.4.1 Coefficients Estimation by The New Bayesian Lasso Tobit Q Reg 

This method is used to evaluate the relationship between Iraqi banks investments and a set of 

independent variables via thirty Tobit quantile regression lines. 

  

5.4. 2 Variable Selection by New Bayesian Lasso Tobit  Q Reg 

The our method is used to identify the active independent variables in “Iraqi banks 

investments” depending on the relative importance of these variables, via thirty different 

Tobit quantile levels. 

5.5: Bayesian Composite Tobit Quantile Regression: 

We will use our proposed methods of Bayesian composite Tobit  Q Reg in two directions: the 

coefficients estimation and variable selection via six groups of Tobit quantile levels. 

 

5.5.1: Coefficients Estimation of Composite Tobit Q Reg Model 

In our models, we will use the Bayesian approach for estimating the models coefficients 

because the Bayesian approach has very suitable features. In this section, we will employ it 

for coefficients estimation for six composite Tobit  Q Reg models according to six groups of 

Tobit quantile levels (H=5, H=10, H=15, H=20, H=25 and H=30): 

5.5.2. Variable Selection of Composites Tobit  Q Reg Model 

we will identify the relative importance of informative independent variables in the composite 

Tobit  Q Reg models through six groups of Tobit quantile levels . 
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Chapter Six 

SUMMARY CONCLUSIONS AND FUTURE RESEARCHES  

The main objective  of this thesis is to implementing  of Bayesian variable selection and 

coefficients estimation in Tobit quantile regression model via a set of a new proposed  

methods.  The our proposed methods in Tobit Q Reg model and composite Tobit Q  Reg 

model are consider a new addition in regularized Bayesian approach. And these our proposed 

methods are very efficient compared with other methods in same field, this clear from results 

of simulation examples and real data which were used. The our proposed methods (new 

Bayesian Lasso Tobit Q Reg, and Bayesian composite Tobit Q Reg) are used  to analyse the 

Iraqi banks' investments data. Where, our method ( new Bayesian Lasso Tobit Q Reg) is used  

in two sides: firstly, it is used to modelling the relationship between  Iraqi bank investments 

and a nine  independent variables at thirty Tobit quantile levels. Secondly, it is used for 

determining relative importance of independent variables in Tobit Q Reg model  also at thirty 

Tobit quantile levels to achieving variable selection. Our method  Bayesian composite Tobit 

Q Reg  is  used in two sides firstly, it is used to modelling the relationship between  Iraqi bank 

investments and a nine  independent variables at six groups of composite  Tobit quantile 

levels. Second,  it is used for determining of relative importance to independent variables in 

composite Tobit Q Reg model  also at six groups of composite  Tobit quantile levels to 

achieving variable selection. From study of theoretical and Applied to our proposed methods , 

we will obtained the following conclusions.   

 

6.1 .THEORETICAL CONCLUSIONS: 

From the results of the simulation and real data studies to our proposed methods, we will 

arrive to the following conclusions: 

- In our proposed method, new Bayesian Lasso quantile regression (new Bayesian 

Lasso Q Reg) is assigned independent scale-mixture of uniform distributions for the 

regression coefficients. Then, a simple and efficient MCMC algorithm was presented for 

Bayesian sampler. Simulation studies and a real data set are used to investigate the 

performance of the proposed method compared to some other existing methods. Both 

simulated and real data examples show that the proposed method performs quite well 

compared to the other methods under a variety of scenarios. 

- Simulation studies show that our Gibbs sampler is effective in shrinkage and 

estimation of the regression coefficients under a variety of scenarios. Also our simulation 

scenarios indicate that our proposed method works well even when the true distribution for 

the error term is not asymmetric Laplace distribution (ALD). This case was also observed by 
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Yuan and Yin (2010))[71], (Li et al. (2010))[52], (Alhamzawi et al. (2012))[1] and (Ji et al. 

(2012))[37], among others. 

- The proposed method (new Bayesian quantile regression) gives us an efficient and 

simple Gibbs sampling algorithm with good conditional posterior distributions. The proposed 

Gibbs sampling algorithm has many advantages ans it not complicated to use, since it 

implementing variables selection is obvious and our method is more balanced compared with 

other methods under study. 

- Our proposed MCMC algorithm presented for the new Bayesian Lasso Q Reg method 

was very stable, as it is shown in the results which belong to multivariate potential scale 

reduction factor (MPSRF). Our method has become stable and close to one after 2000 

iterations via each quantile levels (0.50, 0.75 and 0.95), showing that the convergence of the 

posterior distribution for the proposed method was rapid and the mixing was good. 

- Our proposed method (new Bayesian Lasso Q Reg) considers a new addition in field 

of Bayesian regularized Q Reg model. Through reformulation, the Laplace prior distribution 

becomes new formula of mixed distribution between uniform distribution and Gamma 

distribution, (scale mixture uniform). 

 

- Our results of the simulation and real data approach indicate that the proposed method 

(new Bayesian Lasso Q Reg) has a good performance compared with other non-Bayesian and 

Bayesian methods. In addition, our proposed method is to consider one of the competitive 

method in coefficients estimation variable selection, and forecast accuracy. 

- One of the good and the valued features of Q Reg model has a robustness and it works 

well even if it violates the normal supposition of error etc. But, in parametric Bayesian Q Reg 

framework, we assumed the error belongs to asymmetric Laplace distribution (ALD). While 

this assumption causes some worry on loss (check) of the nature of nonparametric Q Reg 

model. So, the results of our proposed method (new Bayesian Lasso Q Reg)  is  quite 

insensitive to this assumption and behaves good for data generated from other error 

distributions. 

- To assess our proposed method (new Bayesian Lasso QReg), we tested it with three 

other methods, first method belongs to non-Bayseian methods and second and third methods 

belong to Bayesian methods. From results which belong to direct way criterion, the 

coefficients estimation belonging to our proposed method is much closed with true parameters 

compared with non-Bayesian and Bayesian methods. This indicates that our proposed method 

was better than other methods. 

- The entire literature within the field of regularized Bayesian Q Rag models used 

transformation Laplace distribution to scale mixture of normal distribution which was 

proposed by (Andrews and Mallows: (1974)) [5]as the following formula: 
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In order to obtain efficient and simple algorithms for coefficients estimation and variable 

selection in Q Reg model see (Li et al. (2010))[2010], (Alhamzawi et al. (2012)) [1]among 

others . In our proposed method (new Bayesian Lasso Q Reg) another transformation form for 

Laplace distribution was used, that is scale mixture uniform as the following formula: 
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This formula was proposed by (Mallick and Yi (2014))[55]. From the new structure of 

Laplace distribution, we obtained a simple and tractable algorithm of our proposed method 

for the variables selection and coefficients estimation in Q Reg model.  

 

- The feature of the proposed method (New Bayesian Lasso Q Reg) is that the proper 

prior distribution is flexible with different quantile levels. The behaviour of mixture of 

uniform prior distribution is obviously perfectly robust with several quantile levels. The 

mixture of uniform prior distribution is very important in regularized Bayesian Q Reg model. 

Therefore, our method of New Bayesian Lasso QReg seems to be very important in numerous 

applications, for instance the variable selection and longitudinal studies. 

- Our proposed method has a good performance with real data. For this purpose air 

pollution data has been used. This dataset was measured by the Public Roads Administration 

in Norway and it consists of 500 observations, 7 covariates and one response variable. The 

mean square error is generated by our proposed method is smaller than the mean square error 

which is generated by other methods. In one case, we see in the real data study that the non- 

Bayesian method (rq) was the best from Bayesian methods, until from our  proposed method 

(new Bayesian Lasso QReg)  at middle quantile level (𝜃2 = 0.75). But our proposed method 

has recorded a good performance compared with other methods via a majority of quantile 

levels. 

- In this thesis we used extensions from the new Bayesian Lasso Q Reg method  to the  

new method as new Bayesian Lasso Tobit Q Reg is considered a new method within the 

regularized Bayesian Tobit Q Reg model, achieving variables selection and coefficients 

estimation together. The applied Bayesian hierarchy for generating full conditional posterior 

distributions is calculated from the joint conditional density function and scale mixture 

uniform prior distribution to create attractive Gibbs sampling algorithm. 

- Our proposed method is to generate a new Bayesian hierarchy Lasso by using scale 

mixture uniform (SMU) prior distribution to coefficients of Tobit Q Reg model, in order to 

achieve coefficients estimation and variables selection, where, SMU is considered a good 

replacement for scale mixture normal (SMN) to regularized Bayesian Lasso Tobit Q Reg 

model. Our MCMC algorithm derived from full conditional posterior distributions, simple 

and efficient. The performance of our proposed assessed method compared with other 

methods by simulation examples and real data. The results in both simulation study and real 

data recorded our proposed method as new Bayesian Lasso Tobit Q Reg better than  

compared with other methods via different quantile levels. Therefore, it can be considered a 

good method for coefficients estimation and variable selection in Tobit Q Reg model. 

- When the model accommodates a big number of independent variables, there is no 

guarantee that the penalty parameter for model complexity is suitable for achieving variables 

selection with many dimensions. Therefore our proposed method (new Bayesian Lasso Tobit 

Q Reg) considers a good approach for achieving variable selection in Tobit Q Reg model with 

many dimensions. Also, our proposed method does not need long time for achieving variables 

selection which is done automatically. 

- Our propose method  ( new Bayesian Lasso in Tobit Q Reg ) uses  scale mixture of the 

uniform distribution (SMU) for a new hierarchy prior distribution to the model parameters 

which are lead to production of full conditional posterior distributions to constructing 

tractable and efficient (MCMC)  algorithm  for implementing of  the variables selection and 

coefficients  estimation in Tobit Q Reg model. 

 

Also all authors that work within the field regularized Bayesian Tobit Q Reg models use 

transformation Laplace distribution to scale mixture of normal distribution, proposed by 

(Andrews and Mallows: (1974))[5] as the following formula. 
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For obtaining efficient and simple algorithm for coefficients estimation and variable 

selection in Tobit Q Reg model (see( Ji et al. (2012))[37], Alhamzawi (2014))[3] among 

others. 

 In our proposed method (new Bayesian Lasso Tobit Q Reg) is used another 

transformation form for Laplace distribution is scale mixture uniform as the following  

𝜆

2
𝑒{−𝜆|𝛽𝑗|} = ∫

1

2𝑢𝑗
 
𝜆2

Γ(2)

∞

𝑠𝑗>|𝛽𝑗|

  𝑢𝑗
2−1 𝑒𝑥𝑝{−𝜆𝑢𝑗} 𝑑𝑢𝑗  

The formula was proposed by (Mallick and Yi (2014))[55]. From the new structure of 

Laplace distribution, we obtained on straightforward and tractable algorithm for variables 

selection and coefficients estimation in Tobit Q Reg model.   

 

- Our Gibbs sampling algorithm generates a complete and informative conditional 

posterior distribution in variables selection in Tobit Q Reg model. These advantages in our 

Gibbs sampling belong to using proper prior distribution, which is compound of two parts. 

The first part is assigned to prior uniform distribution, and the second part is assigned to 

Gamma distribution with shape parameter two and scale parameter. This proper hierarchy 

prior distribution provides to our Gibbs sampling algorithm durability with high dimensional 

models compared with other methods which  are lost this advantages. 

 

- The coefficients estimation in Tobit Q Reg model is implemented by minimization the 

following check (loss) function 

  

= ∑𝜌𝜃

𝑛

𝑖=1

𝛼𝜃,𝛽𝜃
𝑚𝑖𝑛 (𝑦𝑖 −𝑚𝑎𝑥{0, 𝑇𝑖

∗}) 

 

However, it is not differentiable at origin point, so there is not an exact form of the solution 

for these parameters (Koenker, (2005))[42]. The minimization of this check function can be 

resolved by a linear programming algorithm (Koenker and D’Orey, (1987))[46]. Therefore, 

our proposed method considers a new method which will contribute in coefficients estimation 

in Tobit Q Reg model and it considers efficient methods when the response variable has high 

censored data. 

 

- For assessing our proposed method (new Bayesian Lasso Tobit quantile regression), 

we compared it with two other methods, the first one belongs to non-Bayseian methods and 

the second method belongs to Bayesian methods. Results are generated via four simulation 

studies, which are concluded with the behaviour of our proposed method in outperformance 

on Bayesian and non-Bayesian method until censored data. Also the coefficients estimation 

which belongs to our proposed method is closed with true parameters compared with non-

Bayesian and Bayesian methods. This indicates outperforms of our proposed method 

compared with other methods. 

 

- Our proposed method considers a good approach with real data. In order to evaluate 

our proposed method, the extramarital Affairs data has been used.  It is introduced by Fair in 

(1978).  This data are was found in AER package from R.  The mean square error generated 

by our proposed method is smaller than the mean square error which is generated by the other 
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methods. Therefore, our proposed method has a better performance than other methods with 

real data. 

 

- Our MCMC algorithm belongs to our method (new Bayesian lass Tobit Q Reg), which 

is strong and attractive to achieve variable selection via computation of the relative 

importance to each covariates in our l Tobit Q Reg model.   

 

- Composite Q Reg models have been shown to be influential techniques in developing 

the prediction accuracy (Zou and Yuan, (2008))[76]; (Bradic et al., (2011))[12]; (Zhao and 

Xiao, 2014)[77]. Our proposed method studies composite Tobit Q Reg from a Bayesian 

approach. An efficient and simple MCMC-based calculation method is derived for posterior 

distribution inference using a mixture of an exponential and a scaled normal distribution of 

the asymmetric Laplace distribution (ALD). The approach is studied via simulation examples 

and a real data. These results show that gathered information across different quantile levels 

can provide a good method in efficient statistical estimation. This is considered first work to 

study composite Tobit quantile regression by a Bayesian perspective. 

 

- In Tobit quantile regression model, there are an infinity numbers of Tobit Q Reg lines 

at different Tobit quantile levels.  Therefore, the process of choosing the best Tobit Q Reg 

line is hard matter. To overcome this problem it is necessary to use composite Tobit quantile 

regression in order to obtain estimators at different quantile levels to achieve efficiency gain. 

Our proposed method (Bayesian Composite Tobit Quantile Regression) considers a new 

addition in coefficients estimation of composite Tobit Q Reg model. 

 

- In our proposed method (Bayesian Composite Tobit Q Reg), the new hierarchical 

prior distribution and the Likelihood function of (ALD) for the error that is proposed by 

(Kozumi and Kobayashi (2011))[49] will produce full conditional posterior distributions. 

These complete conditional posterior distributions are informative for building a strong and 

efficient MCMC algorithm for our proposed method in order to achieving the coefficients 

estimation and variable selection in composite Tobit Q Reg model with a high accuracy. 

 

- Our MCMC algorithm was presented for a Bayesian Composite Tobit Q Reg was very 

stable, this is clear from results of multivariate potential scale reduction factor (MPSRF) is 

computed via simulation1 at five type of error distributions, where it becomes stable and close 

to one after 3000 iterations. This shows that the convergence of the full conditional posterior 

distributions for the algorithm was very quick and the chain mixing was good.  

 

In this thesis, we developed a simple and efficient MCMC algorithm based on computation 

technique for composite Tobit Q Reg based on a mixture of an exponential and a scaled 

normal distribution of the asymmetric Laplace distribution. Simulation studies show that our 

proposed method is effective in coefficient estimation ar different error distributions. Our 

proposed method (Bayesian Composite Tobit Q Reg ) has a outperformance on other 

methods. We see performs of our proposed method with mixture error distributions that are 

better than non-mixture error distributions.  

 

After assessing of our proposed method by using simulation approach, we will evaluate our 

proposed method (Bayesian composite Tobit Q Reg) with real dataset. We used the labour 

force participation data available within  AER package in R, introduced by (Mroz (1987))[6] 

.The dataset consists of n = 753 observations of which 325 are censored observations.These 

data contain the one response variable (wife’s hours of work in 1975 (hours)) and six 

covariates. Our proposed method has a good performance compared with other method with 

high censoring level in response variable. Therefore, our proposed method (Bayesian 
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composite Tobit Q Reg) has a good performance with real dataset. Our new algorithm 

belonging to our method (Bayesian composite Tobit Q Reg) was efficient and it represented a 

simple way to achieve variable selection via computation of the relative importance to each 

covariates in our model composite Tobit Q Reg model.   

       

6.2 . APPLIED CONCLUSIONS. 

The proposed methods (new Bayesian Lasso Tobit quantile regression and Bayesian 

Composite Tobit Quantile Regression) are applied in in financial data for modelling of the 

relationship between response variable (Iraqi bank investments) and a set of independent 

variables. Via different Tobit quantile levels and groups of Tobit quantile levels  respectively 

from our results, we reached to a set of general conclusions: 

- From the results of Pseudo-R square, the thirtieth Tobit quantile regression line which 

belongs to (θ30 = 0.99) was the best from all the Tobit quantile regression lines used to 

represent the studied data. Where the Pseudo-R square belongs to Tobit Q Reg model at θ30 =

0.99 is equal   0.573283, this  means that 57.32 % of the variation in censored response 

variable can be explained by a set of independent variables(𝑥1 ∶Banking Deposit ,𝑥2  Banking 

profits ,𝑥3 Bank capital ,𝑥4 :Bank reserves ,𝑥5 :Banking Loans , 𝑥6 : advertising expenditures 

,𝑥7 :Age of bank ,𝑥8 Number of Banks Branches ,𝑥9: Bad debt).  Although, it is the most 

powerful line for interpreting of the data under study compared with the rest of the Tobit 

quantile regression lines, it does not have a high strength in interpreting that data. Therefore, 

we used Tobit quantile regression line which can interpret the data under study strongly, but 

the process of identifying is a very difficult one.   

- The results are showed that the all composite Tobit quantile models which are belong 

to six groups of Tobit quantile levels have a high ability in explanation of the data studied. 

This clear from the Pseudo R-square results.  

 

- The independent variables (𝑥1 ∶banking Deposit, 𝑥2: Banking profits, 𝑥4:Bank 

reserves) have  a statistically significant effect on the response variable (Iraqi bank 

investments) via all groups of Tobit quantile levels. Also the independent variables (𝑥3: Bank 

capital, 𝑥7:Age of bank, 𝑥8:Number of Banks Branches, 𝑥9: Bad debt) have a statistically 

significant effect on the response variable (Iraqi bank investments) via majority of  groups of 

Tobit quantile levels . But, there are two independent variables (𝑥5:Banking 

Loans, 𝑥6:Advertising Expenses) are insignificant in the response variable (Iraqi bank 

investments) via all groups of Tobit quantile levels. 

- At six Groups  of Tobit Quantile levels, there is a set of independent variables which 

are active in constructing composite Tobit Q Reg model via different Groups of Tobit 

Quantile levels as follows: At first group (H=5), there are six independent variables (𝑥1: 

Banking Deposits, 𝑥2: Banking profits, 𝑥3: Bank capital,  𝑥6 : Advertising Expenses, 𝑥8 

:Number of Bank Branches,  𝑥9: Bad debt)   important in this model. In second group (H=10), 

there are six independent variables (𝑥1: Banking Deposits, 𝑥2:Banking profits, 𝑥3: Bank 

capital,  𝑥6:Advertising Expenses, 𝑥8 :Number of Bank Branches,  𝑥9: Bad debt) effective in 

building this model. In third group (H=15), there are seven independent variables (𝑥1: 

Banking Deposits, 𝑥2: Banking  profits, 𝑥3: Bank capital, 𝑥4: Bank reserves,𝑥6 : Advertising 

Expenses,𝑥8 :Number of Bank Branches,𝑥9: Bad debt, 𝑥9: Bad debt) strong in structure this  

model. In  fourth group (H=20), there are eight independent variables (𝑥1: Banking 

Deposits, 𝑥2: Banking  profits, 𝑥3: Bank capital, 𝑥4: Bank reserves, 𝑥6 : Advertising 

Expenses, 𝑥7: Age of the Bank, 𝑥8 :Number of Bank Branches, 𝑥9: Bad debt)  strong in 

structure this model. In fifth group (H=25), there are nine independent variables (𝑥1 ∶Banking 

Deposit ,𝑥2  Banking profits ,𝑥3 Bank capital ,𝑥4 :Bank reserves ,𝑥5 :Banking Loans , 𝑥6 : 
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advertising expenditures ,𝑥7 :Age of bank ,𝑥8 Number of Banks Branches ,𝑥9: Bad debt) 

active in constructing our model. At sixth group (H=30), there are nine independent variables 

(𝑥1 ∶Banking Deposit ,𝑥2  Banking profits ,𝑥3 Bank capital ,𝑥4 :Bank reserves ,𝑥5 :Banking 

Loans , 𝑥6 : advertising expenditures ,𝑥7 :Age of bank ,𝑥8 Number of Banks Branches ,𝑥9: 
Bad debt)  which have a high relative importance in building our model. 

 

-  The independent variables (𝑥1: Banking Deposits, 𝑥2: Banking  profits, 𝑥3: Bank 

capital, 𝑥6 : Advertising Expenses, 𝑥8 :Number of Bank Branches,  𝑥9: Bad debt) are very 

strong in modelling the relationship with response variable (Iraqi banks investments) via all 

groups of Tobit Quantile levels. The rest independent variables (𝑥4 :Bank 

reserves, 𝑥5:Banking Loans, 𝑥7:Age of bank) are strong in modelling the relationship with 

response variable (Iraqi banks investments) via majority of groups of Tobit Quantile levels. 

The following table shows the speech  above by briefly: 

Table 6.1: Summary of status of independent variables via six groups of Tobit Quantile 

levels. 

 
   Independent  

       variables        

 

the groups 

 

𝑥1: 

Banking 

Deposits 

𝑥2: 

Banking 

profits 

𝑥3 Bank 

capital 

𝑥4 :Bank 

reserves 

𝑥5 

:Banking 

Loans 

𝑥6 : 

advertising 

expenditure

s 

𝑥7 :Age of 

bank 

𝑥8 

Number 

of Banks 

Branches 

𝑥9: Bad debt 

H=5 Active Active Active Inactive Inactive Active Inactive Active Active 

H=10 Active Active Active Inactive Inactive Active Inactive Active Active 

H=15 Active Active Active Active Inactive Active Inactive Active Active 

H=20 Active Active Active Inactive Active Active Active Active Active 

H=25 Active Active Active Active Active Active Active Active Active 

H=30 Active Active Active Active Active Active Active Active Active 

 

 For determining  of  the strength and weakness of the independent variables in the 

Tobit Q Reg model via different Tobit quantile levels by our proposed method (New 

Bayesian Tobit Q Reg) as follows: 

𝒙𝟏: Banking Deposits : The Larger probability value  to this variable in Tobit Q Reg model  

at 𝜃28 = 0.92. Where ,its  probability value is (0.839) greater than 0.5 . So, it is very 

important in building Tobit Q Reg model  at 𝜃28 = 0.92 .  The smaller probability value  to 

this variable in Tobit Q Reg model  at 𝜃23 = 0.79. Where ,its  probability value is (0.599) 

greater than 0.5 . Also, it is very important in building Tobit Q Reg model  at 𝜃28 = 0.92 . in 

generally,  𝑥1: Banking Deposits is active in Tobit Q Reg model  at all Tobit quantile levels. 

We cannot cancel this variable from our model.  

𝒙𝟐: Banking  profits :The Larger probability value  to this variable in Tobit Q Reg model  

at 𝜃28 = 0.92 . Where ,its  probability value is (0.853) greater than 0.5 . So, it is very active  

in building Tobit Q Reg model  at 𝜃28 = 0.92 .  The smaller probability value  to this 

variable in Tobit Q Reg model  at 𝜃1 = 0.01. Where ,its  probability value is (0.413) less 

than 0.5. So, it is ineffective  in building Tobit Q Reg model  at 𝜃1 = 0.01 . In generally,  𝑥2: 

Banking  profits  is active in Tobit Q Reg model  at majority Tobit quantile levels. We can 

depend on this variable in modelling our model. 

𝒙𝟑 Bank capital: The Larger probability value  to this variable in Tobit Q Reg model  at 

𝜃30 = 0.99 . Where ,its  probability value is (0.797) greater than 0.5 . So, it is strong  in 

building Tobit Q Reg model  at 𝜃30 = 0.99 .  The smaller probability value  to this variable in 

Tobit Q Reg model  at 𝜃19 = 0.66. Where ,its  probability value is (0.298) less than 0.5. So, it 

is a weak  in building Tobit Q Reg model  at 𝜃19 = 0.66 . In generally,  𝑥3 Bank capital  is 
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unimportant in Tobit Q Reg model  at majority Tobit quantile levels. We can ignore this 

variable from structure our model. 

𝒙𝟒: Bank reserves: The Larger probability value  to this variable in Tobit Q Reg model  at 

𝜃3 = 0.08 . Where ,its  probability value is (0.778) greater than 0.5 . So, it is active  in 

constructing a Tobit Q Reg model  at 𝜃3 = 0.08 .  The smaller probability value  to this 

variable in Tobit Q Reg model  at 𝜃21 = 0.74. Where ,its  probability value is (0.309) less 

than 0.5. So, it is inactive  in building a Tobit Q Reg model  at 𝜃21 = 0.74 . In generally,  𝑥4: 
Bank reserves  is a strong in a Tobit Q Reg model  at majority Tobit quantile levels. We 

cannot  delete this variable from structure our model. 

𝒙𝟓 :Banking Loans: The Larger probability value  to this variable in Tobit Q Reg model  at 

𝜃30 = 0.99 . Where ,its  probability value is (0.802) greater than 0.5 . So, it is active  in 

building a Tobit Q Reg model  at 𝜃30 = 0.99.  The smaller probability value  to this variable 

in Tobit Q Reg model  at 𝜃12 = 0.42. Where ,its  probability value is (0.332) less than 0.5. 

So, it is a weak  in building a Tobit Q Reg model  at 𝜃12 = 0.42 . In generally,  𝑥5 :Banking 

Loans  is very active in a Tobit Q Reg model  at majority Tobit quantile levels. We cannot  

ignore it from building our model. 

𝒙𝟔 : Advertising Expenses: The Larger probability value  to this variable in Tobit Q Reg 

model  at 𝜃30 = 0.99 . Where ,its  probability value is (0.811) greater than 0.5 . So, it is strong  

in building a Tobit Q Reg model  at 𝜃30 = 0.99.  The smaller probability value  to this 

variable in Tobit Q Reg model  at 𝜃19 = 0.66. Where ,its  probability value is (0.261) less 

than 0.5. So, it is a trifle in constructing a Tobit Q Reg model  at 𝜃19 = 0.66. In generally,  𝑥6 

: Advertising Expenses  is very a weak  in a Tobit Q Reg model  at majority Tobit quantile 

levels. We can  delete  it from building our model. 

𝒙𝟕 :Age of bank: The Larger probability value  to this variable in Tobit Q Reg model  at 

𝜃30 = 0.99 . Where ,its  probability value is (0.822) greater than 0.5 . So, it is active  in 

building a Tobit Q Reg model  at 𝜃30 = 0.99 .  The smaller probability value  to this variable 

in Tobit Q Reg model  at 𝜃18 = 0.63. Where ,its  probability value is (0.339) less than 0.5. So, 

it is ineffective  in building a Tobit Q Reg model  at 𝜃18 = 0.63. In generally,  𝑥7 :Age of 

bank  is a strong  in Tobit Q Reg model  at majority Tobit quantile levels. We cannot ignore it 

from structure our model. 

𝒙𝟖 Number of Banks Branches :The Larger probability value  to this variable in Tobit Q 

Reg model  at 𝜃30 = 0.99 . Where ,its  probability value is (0.828) greater than 0.5 . So, it is 

effective   in structure a Tobit Q Reg model  at 𝜃30 = 0.99.  The smaller probability value  to 

this variable in Tobit Q Reg model  at 𝜃17 = 0.60. Where ,its  probability value is (0.325) less 

than 0.5. So, it is a trifle in building a Tobit Q Reg model  at 𝜃17 = 0.60 . In generally,  𝑥8 

Number of Banks Branches is very a weak in a Tobit Q Reg model  at majority Tobit quantile 

levels. We can  cancel  it from structure our model. 

 

𝒙𝟗: Bad debt: The Larger probability value  to this variable in Tobit Q Reg model  at 𝜃30 =
0.99 . Where ,its  probability value is (0.875) greater than 0.5 . So, it is very strong  in 

building a Tobit Q Reg model  at 𝜃30 = 0.99 .  The smaller probability value  to this variable 

in Tobit Q Reg model  at 𝜃12 = 0.42. Where ,its  probability value is (0.591) greater than 0.5 . 

also, it is a strong  in building a Tobit Q Reg model  at 𝜃12 = 0.42. In generally,  𝑥9: Bad debt  

is very strong  in Tobit Q Reg model  at all Tobit quantile levels. We cannot delete this 

variable from structure our model. 

 

 The  independent variables (𝑥1: Banking Deposits,𝑥9: Bad debt) have probability 

value greater than 0.5 in Tobit Q Reg model  at all Tobit quantile levels. Therefore these 

independent variables is very active in our model. And the independent variables (𝑥2: 

Banking  profits,𝑥5 :Banking Loans, 𝑥7 :Age of bank) have probability value greater than 0.5 

in Tobit Q Reg model  at majority Tobit quantile levels. Therefore these independent 
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variables is very strong  in our model. But the independent variables (𝑥3: Bank capital, 𝑥6 : 

Advertising Expenses,  𝑥8 :Number of Bank Branches) have probability value less than 0.5 in 

Tobit Q Reg model  at majority Tobit quantile levels. Therefore these independent variables is 

very a weak in our model, we can cancel them from our model. 

 

  For determining  of  the strength and weakness of the independent variables in the 

composite Tobit Q Reg model via six groups of composite Tobit quantile levels by our 

proposed method (Bayesian composite Tobit Q Reg) as follows: 

𝒙𝟏: Banking Deposits : The Larger probability value  to this variable in composite Tobit Q 

Reg model  at ten composite Tobit quantile levels [H=10] . Where ,its  probability value is 

(0.917) greater than 0.5 . So, it is very active in building a composite Tobit Q Reg model  at 

[H=10] .  The smaller probability value  to this variable in composite Tobit Q Reg model  at 

five composite Tobit quantile levels [H=5] . Where ,its  probability value is (0.893) greater 

than 0.5 . Also, it is very active in building Tobit Q Reg model  at [5] . In generally,  𝑥1: 

Banking Deposits is a strong  in composite Tobit Q Reg model  at all six groups of composite 

Tobit quantile levels . We cannot cancel this variable from our model. 

  

𝒙𝟐: Banking  profits :The Larger probability value  to this variable in composite Tobit Q 

Reg model  at twenty five composite Tobit quantile levels [H=25] . Where ,its  probability 

value is (0.907) greater than 0.5 . So, it is very strong  in structure  a composite Tobit Q Reg 

model  at [25] .  The smaller probability value  to this variable in composite Tobit Q Reg 

model  at five composite Tobit quantile levels [H=5] . Where ,its  probability value is 

(0.880) greater than 0.5 . Also , it is  effective  in building a Tobit Q Reg model  at [5] . In 

generally,  𝑥2: Banking  profits  has a high relative importance  in composite Tobit Q Reg 

model  at all six groups of composite Tobit quantile  levels. We can depend on this variable 

in modelling our model strongly . 

𝒙𝟑 Bank capital: The Larger probability value  to bank capital in composite Tobit Q Reg 

model  at thirty composite Tobit quantile levels [H=30] . Where ,its  probability value is 

(0.703) greater than 0.5 . So, it is effective  in constructing a composite Tobit composite Q 

Reg model  at[H = 30] .  The smaller probability value  to bank capital in composite Tobit Q 

Reg model  at five composite Tobit quantile levels [H=5] . Where ,its  probability value is 

(0.642) less than 0.5. Also, the bank capital is very strong   in building a composite Tobit Q 

Reg model  at[5]. In generally,  𝑥3 Bank capital  is important in composite Tobit Q Reg 

model  at all six groups of composite Tobit quantile  levels. We cannot  ignore this variable 

from structure our model. 

𝒙𝟒: Bank reserves: The Larger probability value  to this variable in composite Tobit Q Reg 

model  at twenty composite Tobit quantile  levels [H=20]. Where ,its  probability value is 

(0.617) greater than 0.5 . So, it is effective   in building  a composite Tobit Q Reg model  at 

[𝐻 = 20] .  The smaller probability value  to this variable in composite Tobit Q Reg model  at 

five composite Tobit quantile  levels [H=5] . Where ,its  probability value is (0.346) less than 

0.5. So, it is active  in building a composite Tobit Q Reg model  at [H = 5]. In generally,  𝑥4: 
Bank reserves  is a strong in a Tobit Q Reg model  at majority six groups of composite Tobit 

quantile  levels . We cannot  delete this variable from structure our model. 

𝒙𝟓 :Banking Loans: The Larger probability value  to banking loans in composite Tobit Q 

Reg model  at twenty five composite Tobit quantile  levels [H=25]. Where ,its  probability 

value is (0.667) greater than 0.5 . So, banking loans is active  in building a Tobit Q Reg model  

[25].  The smaller probability value  to this variable in composite Tobit Q Reg model  at 

twenty composite Tobit quantile  levels [H=20]. Where ,its  probability value is (0.306) less 

than 0.5. So, it is a  very weak  in building a composite Tobit Q Reg model  at [H=20] . In 

generally,  𝑥5 :Banking Loans  is very a weak  in a composite Tobit Q Reg model  at majority 

six groups of composite Tobit quantile  levels . We can   ignore  this variable from structure 

our model. 
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𝒙𝟔 : Advertising Expenses: The Larger probability value  to advertising expenses  in 

composite Tobit Q Reg model  at thirty composite Tobit quantile  levels [H=30]. Where ,its  

probability value is (0.853), greater than 0.5 . So, it is strong  in building a composite Tobit Q 

Reg model  at [30].  The smaller probability value  to this variable in composite Tobit Q Reg 

model  at five composite Tobit quantile  levels [H=5]. Where ,its  probability value is (0.802) 

less than 0.5. Also , it is a very strong  in constructing a composite Tobit Q Reg model  at 

[H=5]. In generally,  𝑥6 : Advertising Expenses  is  a very strong   in a composite Tobit Q Reg 

model  at majority Tobit quantile levels. We can  delete  it from building our model, at all six 

groups of composite Tobit quantile  levels . We cannot    omit   this variable from structure 

our model. 

𝒙𝟕 :Age of bank: The Larger probability value  to age of bank in composite Tobit Q Reg 

model  at twenty composite Tobit quantile  levels [H=20]. Where ,its  probability value is 

(0.684) greater than 0.5 . So, it is active  in building a composite Tobit Q Reg model at 

[H=20].  The smaller probability value  age of bank in composite Tobit Q Reg model  at ten 

composite Tobit quantile  levels [H=10]. Where ,its  probability value is (0.324) less than 0.5. 

So, it is inactive  in building a composite Tobit Q Reg model  at [10]. In generally,  𝑥7 :Age 

of bank  is a active  in composite Tobit Q Reg model  at majority six groups of composite 

Tobit quantile  levels. 

𝒙𝟖 Number of Banks Branches :The Larger probability value  to this variable in composite 

Tobit Q Reg model  at twenty five composite Tobit quantile  levels [H=25]. Where ,its  

probability value is (0.903) greater than 0.5 . So, it is very effective   in structure a composite 

Tobit Q Reg model at [25].  The smaller probability value  to this variable in composite Tobit 

Q Reg model  at twenty composite Tobit quantile  levels [H=20]. Where ,its  probability value 

is (0.865) less than 0.5. Also , it is a strong in building a composite Tobit Q Reg model  

at[H=20] . In generally,  𝑥8 Number of Banks Branches is very strong  in a composite Tobit Q 

Reg model,  at all six groups of composite Tobit quantile  levels . We cannot    omit   this 

variable from structure our model. 

𝒙𝟗: Bad debt: The Larger probability value  to bad debt in composite Tobit Q Reg model  at 

twenty five composite Tobit quantile  levels [H=25].Where ,its  probability value is (0.910) 

greater than 0.5 . So, it is very strong  in constructing a  composite Tobit Q Reg model  at [25] 

.  The smaller probability value  to bad debt in composite Tobit Q Reg model  at five 

composite Tobit quantile  levels [H=5]. Where ,its  probability value is (0.892) greater than 

0.5 . Also, it is a strong  in building a Tobit Q Reg model  at [5]. In generally,  𝑥9: Bad debt  is 

very strong  in composite Tobit Q Reg model  at all six groups of composite Tobit quantile  

levels . We cannot    ignore    this variable from structure our model. 

 The  independent variables (𝑥1: Banking Deposits, 𝑥2: Banking  profits, 𝑥3: Bank 

capital, 𝑥6 : Advertising Expenses,  𝑥8 :Number of Bank Branches,𝑥9: Bad debt) have 

probability value greater than 0.5 in composite Tobit Q Reg model  at all six groups of 

composite Tobit quantile  levels. So, these independent variables is very strong  in our model. 

And the independent variables (𝑥4: Bank reserves, 𝑥7 :Age of bank) have probability value 

greater than 0.5 in composite Tobit Q Reg model  at majority six groups of composite Tobit 

quantile  levels. Therefore these independent variables is very strong  in our model. But the 

independent variable (𝑥5 :Banking Loans) have probability value less than 0.5 in composite 

Tobit Q Reg model  at majority Tobit quantile levels. Therefore these independent variables is 

very a weak in our model, we can omit  it  from our model. 

 

6.3. FUTURE RESEARCHES 

Our proposed methods have a good possibility in variable selection and coefficient 

estimation in a set of regression models. Therefore, these methods can be easily extended to 

several ways. As follows: 
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- Our proposed method new Bayesian Lasso quantile regression can be easily extended   

to new Bayesian adaptive Lasso quantile regression via using a scale mixture uniform 

instead of scale mixture normal where a scale mixture of uniform will create a new 

hierarchical Bayesian formulation of adaptive Lasso. The expected new Bayesian treatment 

leads to a simple and efficient Gibbs sampler conditional posterior distributions. Simulation 

approaches and real data are used to test the performance of proposed method compared 

with other methods in the same field. The expected proposed method considers a new 

addition in variable selection and prediction accuracy in quantile regression model at 

different quantile levels. 

 

- Our method new Bayesian Lasso Tobit Q Reg can be extended to new Bayesian 

adaptive Lasso Tobit quantile regression with a new hierarchical prior distribution via using 

a scale mixture uniform which generates a new hierarchical Bayesian for full conditional 

posterior distribution. The expected a new hierarchical Bayesian give us attractive and 

informative Gibbs sampler. Also the expected, new Bayesian adaptive Lasso Tobit Q Reg is 

very effective in coefficient estimation and variable selection in Tobit quantile regression 

model. Simulation scenarios and real dataset will used to evaluating new Bayesian adaptive 

Lasso Tobit Q Reg compared with other methods in the same field.  

 

- Our proposed method new Bayesian Lasso Tobit Q Reg model can be easily extended 

this method to Bayesian Lasso composite Tobit Q Reg with a mixture uniform prior scale 

through assigning an independent scale-mixture of uniform prior distributions to parameters 

of model. This suggestion creates a new structure of prior distributions to all parameters of 

model. This new stricture generates informative conditional posterior distributions which are 

lead to attractive and efficient Gibbs sampling algorithm, and this algorithm is very robust 

until with the response variable has much censored data. To assessing this proposed method 

the simulation approach and rea data will used. 

 

- Binary quantile regression was developed by Manski (1975, 1985) and employed in 

classification, indicating the drawbacks in frequent processes given the difficulty of 

optimization to estimate the parameters and the problem of computing confidence interval to 

the parameters. Kordas (2006) studied models with binary response variable by quantile 

regression and concluded that this approach drives to good classification. Bayesian approach 

was adopted by (Benoit et al.(2012))[11] in order to avoid the drawback that mention above 

by setting some assumptions on the error term. Miguéis et al. (2013) considered the approach 

proposed by (Benoit et al. (2012))[11] to evaluate the credit risk and it was modelled by 

binary quantile regression. The novel in this proposed study is the Bayesian hierarchical 

model to estimate the coefficients of the composite quantile regression model when the 

response variable is binary. In order to select variables, in binary composite quantile 

regression Lasso and the adoptive Lasso penalty is derived in a Bayesian framework.  
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