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Sumimary

The study of elliptical curves has a rich history and proves once again the
beauty of pure, theoretical mathematics and the way it’s applicability emerges
after defining new concepts which in first place are charged as abstract by
the scientific society, but in the end it is certain that the model was a math
premonition of nature’s concepts.

Thus, some properties of systems based on elliptical spaces date from the
last century, but formings in this sense were dated long before, by study of
diophantine equations (3th century, greek mathematician A. Diophantus). This
domain was highlighted with articles of mathematicians N. Koblitz (|10]) and V.
Miller ([61]) which gave a brand new applicability of those equations in domain
of asymmetric cryptosystem.

It goes from definition of elliptic curve given by Weierstrass’s equation:

E:y® = aay + azy = 2° + az2” + asx + ag (1.1)

where a; € K and K is the space where curve F is defined.
Those curves can be divided in two classes namely those who are
supersingular and nonsupersingular curves ([2]) with modern applicability

(120D
1. A supersingular curve (zero j-invariant) is set of solution for equation:
v =2 +ax+b (1.2)

where a,b,c € GF(2F), discriminant is A = 4a®+27b # 0, with the point
at infinity O.

2. An nonsupersingular elliptical curve (nonzero j-invariant) is the set
solutions of the equation

v+ oy =a2°+ar® +b (1.3)
where a, b, c € GF(2%), discriminant is A # 0, with the point to infinit O.

Asymmetric keys used in modern cryptography are pairs of points which
contain a particular set of properties with a scalar.

Hence, many mathematicians have studied ways to obtain spaces with
properties in this sense (2], [31], [28]) and optimizations of the model by adding
new boundary conditions for nonlinear equations systems which have boundary




solutions, those being actually required parameters in real conditions of securing
the informational flow ([3]).

Essentially, beyond optimal implementations, complexity of algorithms used
and computing power, it is proven fact that the only models resistant to
cryptographic attacks were those that had an mathematical outfit based on
construction of subspaces with particularities that the boundary solution set to
be characterized by a system of differential equations which are defined over
elliptic curves, defining the necessary type of Frobenius isomorphisms ([21],
[56]).

Studies such as methods for calculating of parameters involved,
isomorphisms which define parts of the model involved and, especially, some
particular spaces in which are defined elliptical curves, differential analysis
study and also boundary solutions for differential equations over elliptic curves,
all of these defined the researche that followed and areas that have open
issues in terms of applicability. In the domain of particular spaces that define
elliptical curves and border solutions for differential systems with applications in
nonlinear systems of analysis of resistance to attacks for cryptographic models,
in this regard, I studied, build the algorithms and implemented proprietary
solutions for unsolved problems in applied mathematics for cryptography.

Starting from the classification in terms of structure fields over which are
defined classical elliptical curves, in second chapter are described field structures
over elliptical curves, methods of calculating the parameters involved in finite
spaces of type GF(2¥), applicable in nonsupersingular elliptic curves, results
which were published in article ([20]).

In this chapter are described optimized personal solutions of differential
calculation of parameter p of an elliptical curve and studies performed on
infeasibility level of the studied mathematical model, presented in algorithm 1
(the results where published in [19]). Let I' subset of points on an elliptical curve
for which the inverse was calculated, x inverse of a number ¢, t differentiation
level (will define the safety degree of the generated system).

Algorithm 1 Differential calculation of the parameter p of an elliptic curve
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In this way, the reduction function will use only shifting operations in order




to define the degree of subset of points with cryptographic properties.

The classical calculation of parameters used in implemented system uses
RNSA (Residue Number System Arithmetic).

In the third chapter was studied the method to determine the particular
finite subspaces with advanced cryptography properties, results being published
in (|21]). Thus, it was described how operations over elliptic curves are made,
features that must be met by a space in order to be resistant to cryptographic
attacks and there were studied ways used for cryptographyc analysis of a
mathematical model for a cryptographic system of that kind. For developed
models, defined over particular subspaces with applicability to increase the
complexity of attack, were studied endomorphisms over finite fields defined in
second chapter, and implications of differential equations involved in nonlinear
analysis of cryptographic system, results being published in article ([22]).
Defined models have there origin given by results of studying existing problems
in some extraction systems of necessary parameters, those studies effectuated
had result published in (|21]). From those results were concluded methods
of optimizations for designing models of algorithms involved in calculation
of necessary parameters in order to determinate solutions of interest for
differential equations defined over elliptical curves, thus, in this chapter were
designed personal variants of optimal implementations for:

Transformation of nonsupersingular elliptic curve Zf for invariant j

From equations described by [10] can be concluded that Jacobian matrix is
invertible over field Z, and § = ((DO)'©)(zo,z1,...,2n_1) € Z, because
(DO)(zg,...,xn—1)(mod p) is matrix’s diagonal with void elements. It is
deductible that Gauss method can be applied, in order to solve the equation

(D@)(l’o, ce ,In_1)5 = @(l’o, ce ,ZEn_l)

because diagonal elements are reversible. Will be calculate on each line, by
moving the low-left item, @/ (o, z,1), to right. After performing k& operations
of this kind, the item can be write as:

k—1
! (l’z 17351‘)
(_1)k®;(x0,xn_1)l—[(pp—+

- (24, Tig)

it can be proven that is divisible with p* from @/ (z;41,2;) = 0(mod p). Starting
from standard procedure I designed a model to calculate the invariant j over
a nonsupersingular subspace of an standard elliptic curve, thus defining a
standard subset of points which can be system solutions for cryptographic keys,
for which calculation will be according to an extraction procedure which will be




defined in the algorithm developed by myself for this purpose, implementation 3
(the results where published in [19]). Nonsupersingular elliptic curve transform
is described in algorithm 2.

Algorithm 2 Transform of nonsupersingular elliptic curve Z? for invariant j
Input: System jI € Ff\]sz with <I>p(jiP,j5r1) = 0(mod p) for

0 < i < n' with precision m|n.

Output: System ji € Zg with ®,(JF, JE ) = 0(mod p™) and J! = j;(mod p) for any
0<i<n.

1. form=1ton' do

2. if 5" # 0 then

3. Ji < gi"
4. else
5. m < [2]-[5], M+ m/, M’<—§.
6. (J&,....J5 ) will be determined by canonical reverse a
(G5 dpa)sm)-
7. for i =0ton’ —2do
8. t @;(Jip, Jﬁl)_l(mod pM).
9. D; + ttID;(Jﬁl, JiP)(mod pM).
10. Py = t((2p(JF, T 11) (mod p™)) [p™ - ) (mod p™)
11. R« @ (JF, P ) (mod p™").
12, S (@IE, ) (mod ) pM) (mod p).
13. if S # 0 then
14. for i =n' — 2 to 0 by step -1 do
15. i < i — D; PE | (mod pM")
16. else
17. for i =0tom’ —1do
18. JP = JP — pM PP (mod pM")

19. return (J&,...,J5 ).

n




Nonlinear method of calculation the number of points with cryptographic
proprieties - SatOT

Starting from the model’s demonstration of Satoh, I developed a calculation
method for subspaces over an elliptic curve which has as feature p and number
of points characterized of For : E(F,) — E(F,) : (z,y) — (a8,y9),
where we define the number of grade 1 cryptographic points as being weak
solutions of cryptographic points, points that can be keys for ECC systems. This
points system ensures a subspace which has a lower computational complexity
to generate points keeping attack complexity on ECDLP at the same level
described in implementation 3 (the results where published in [19]).

Transformation of the first invariant j

Repeatedly application of Vercauteren’s property can be carried out on
nonsupersingular’s elliptic curve space F}/, in invariant’s calculation j?, resulting
in the implementation from 4 (the results where published in [19]).

Simplified version if SST for nonsupersingular elliptic curve F}

Inverse substitution of Frobenius 7! have as method of solving

Y o) =27 (Zat) => ( > apkﬂt’“) C;(1),

j=0 \0<pk+j<n

where C;(t) = 271 (#) = /7" (mod f(t)). If we compute before C,(t) for j =
0,...,p—1, compute of 7! () for a € Z, will contain only p—1 multiplications
in Z,.

Starting from this way of solving, H.Y. Kim, J.Y. Park, J. Cheon, J.H.
Park, J.H. Kim and S. Hahn [/1] highlighted the possibility of using some
finite fields with a Gaussian normal base (GNB) of small type. This base
can convert to Z, and in this way computation can optimize calculations
of Frobenius iterations because B from Q,/Q, is normal if 35 € Q, such
that B = {A(B)|A € Gal(Q,/Q,)}. From here can be deduced the next
sentence, with direct implications finding points of cryptographic interest, whose
demonstration can be found in [11].




Algorithm 3 Nonlinear method for calculating number of points with
cryptographic properties - SatOT

Input: Nonsupersingular elliptic curve E,, derived from F : y* = 2® + az + b defined over
subspace F.., j(Eor) ¢ Fpe.
Output: Number of points with grade 1 cryptographic properties on curve E(an)

1.

=

10.
11.
12.

13.
14.

15.
16.
17.
18.

19.
20.

21.
22.
23.
24.
25.

S vk W

For each point from F, compute subset F,, as an isomorphism of canonical towards g,
using algorithm 2.

if m has value 1 then
Fori=0ton—1do
Ji gt
else

m' « [2] [B], M' + (m —m')(mod q).

(oo s TE0) = (8o G0, M),
Fori=0ton—2do

t @ (J1, T8 ) (mod pM.

Dj + t®1(J2, 1, JT)(mod pM).

Py t((®,(JF, T\ 1) (mod p™M")) (mod p™)).
R+ @ (J¢, JI_))(mod p™).
S ((Dp(J1_y, J§) (mod p™"))) /p™) (mod p).

If either D; is determined by a point from outside of nonsupersingular elliptic curve,
that point will be eliminated.

For ¢ = 0 to min(M',n —2) do
S« S — RP;(mod pM")
R+ —RD)(mod pM")

RI « R+ ®(JI_, J§)(mod p™").

n—1»

P | <« SR~ (mod p™").

If any P characterizes a point from outside of nonsupersingular elliptic curve, resumes
at step 6.

For i =n — 2 to 0 by step -1 do

P, < P; — D; P{, | (mod pM").
Fori=0ton—1do

Ji « J¢ —pM' . P/ Di(mod pM").
Return (J&, ..., J}_,).

1Y n—1




Algorithm 4 Converting the first invariant j

Input: A j9, invariant j € F. /F,> and precision m’ according to algorithm 2.
Output: J? € Zy with J? = 3*" " (mod p) and ®,(J1,3(J9)) = 0(mod p™).

1. J9 <« jm' (mod p).

2. For i =2 tom do

3. J? < Newton_Iteration (®,(X,J), JPJ9 (mod p),i).

4. If J? haave characteristics from outside of nonsupersingular elliptic curve then
5. Resume from step 1.

6. Return J49.

Proposition 1.1. Let p a prime number and n, ¢ two positive integers such that
nt + 1 is prime and different p. Let v a primitive root of order nt + 1 an unit as
an extension of the field Q. If ged(nt/e,n) = 1, with e order of p mod nt + 1,
then for every primitive root of order ¢ of unit 7 in Z/(nt + 1)Z wrote as

t—1
3=
i=0
is an normal element and [Q,(8) : Q,] = n. Such base is called a Gaussian
normal base of type t.
In work [11] are presented values from Z, as being elements from the

following ring:
Zyla] /(& = 1).

multiplication of two elements Z,/(p™Z,) will require a number of operations
with O((nmt)*) complexity, reducing according the previous sentence at ¢t < 2.
For t =1 we have § = 7 and minimal polynomial of /3 is

1
flz) = =z"+2" . o+ L

r—1
Reduction of complexity of computation from Frobenius substitution, according

to H.Y. Kim, is possible by using of redundant representation, by using an
n—1

inclusion, Z, from Z,[z]/(z"*! — 1), what concludes in « = Y ;8" in a(z) =
i=0

n—1

S o’ + 0x". Then $*(8) = 47", which leads to

i=0

Sk (a(z)) = Zaixip’“ = qag + Zaj/pk (mod (n+1))" .
i=0

j=1
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The result will lead to ¥*(a) by permuting it’s coefficients a(x), with an
compute complexity of order O(n). This determinates how Satoh-Skjernaa-
Taguchi computer systems computes over elliptical curves which contains
cryptographic points of grade 1.

If we consider I'(X,X(X)) = 0, and z € Z,; a root of it, for I'(X,Y) €
Z4X,Y], we compute an approximation z,, = z(mod p™) and define 9,, =
(x — x,)/p™, in this way Taylor’s series developed for z,, will determine:

0 = [Nz, X(2)) =T(zp + 0" 0m, X(zp + p"6m))
= T(@m, S(zm)) + 0" (0,4: + 2(0,)A,) (mod p*™), (1.4)

where A, = - (2, X(2)) (mod p™) and A, = 8Lz, S(2,,)) (mod p™), and

D2, X(x,,)) = 0(mod p™) so reducing by p™ we get relation

[ (2, X5(2m
L@m, 2(@m)) + 0m Ay + X(6m) A, = 0(mod p™). (1.5)
pm
for 9,, mod p™.

In order to obtain points of first grade it is sufficient for ord,(A,) = 0,
which means that A, is a unit in Z, and that ord,(A,) > 0. Performing modulo

operation p for equation (1.5) will result:

5P — — U (@, X(2m))

v DA, (mod p) (1.6)

which have a root of p order (unique), d,,, € F,, will obtain an approximation
of x, which is more efficient, given by z,, + p™d,, = x(mod p™*'). Root of
order p have an compute complexity with a grater order, by soluions from
Satoh, Skjernaa and Taguchi: replacing in equation I'(X,¥(X)) = 0 with
I'(X71(X),X) = 0. Thus, d,, will be defined as:
(X (2m), 2m)

- (mod p).

pmg_)l;(z_l (Tm), Tm)

Om

From I'(X7Y(2,), Zm) = 0(mod p™) it only requires finding the inverse of
(5" (@m), Tm) mod p. Implementing this method we determine algorithm 5
(the results where published in [19]), than can replace Satoh’s classical method

[76] for nonsupersingular elliptic curve FZ, it’s implementation being in 5.




Algorithm 5 SST’s simplified version for nonsupersingular elliptic curve F}

Input: Polynomial I'(X,Y) € Z,, item z¢ € Z, satisfy I'(S 7 (z0),z09) = 0(mod p) and
precission m.
Output: Item ,,, € Z, with (X~ (z,,), z.n) = 0(mod p™) and z,, = xo(mod p).

1. For i=2 to m do
x4 (i) + ALG 4(zy,, m)
. If 22 (¢) is not included in nonsupersingular elliptic curve then
resumes on step 1
oY
.y < xo(mod p).
. For i=0 to m do

v | B YmeteD |

9. y + y — dl(z,y)(mod p?).

2
3
4
5. d < (255 (w0),70)) " (mod p).
6
7
8

10. Return y.

The complexity of classic algorithm is given by the call, after every iteration,
in order to recalculate I'(x,y), although values of x and y at step i + 1 are very
close to values from i step, while result given in 5 uses an approximation of
the two parameters and it is took in consideration only nonsupersingular space.
After determining zy, = x(mod p"') associated with W are considered elements
s € N, for which

DS (Zawsi), Tsws) = DS (zaw ), zaw ) + A(mod pEtHW), (1.7)
with
or . _ or
A = pSW (a_X(Z 1<sz)7sz)E 1(5) + a—Y(E 1($sw),l’sw)§) .
All it remains to find out the solution is to calculate partial derivates
or __ ar
G_X(E 1(:USW)7 xSW) and a_Y(Z l(sz)a :USW)

for modulus p".
For (XY (zsw), zsw) and 4 < W can be determined T'(X ™Y (Zgw 44), Tsw i),
by using equation (1.7).

Variation of SatSk-Taguchi’s algorithm for nonsupersingular elliptic curve
F

q

Starting from parameters’s descriptions of nonsupersingular elliptic curve
from algorithm 2 and the method of points calculation on nonsupersingular
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elliptic curve, considering equation (1.7) to cause each update of I'(z,y), I
determined a computing model of x,, element, for subspace of invariants which
can’t not be deduced directly from cryptographic analysis of ANG’s system,
illustrated in 6.

Algorithm 6 Variant of SatSk-Taguchi’s algorithm for nonsupersingular elliptic

curve [,
Input: Polynomial I'(X,Y) € Z,, item zy € Z, satisfy ['(X7*(z0),z0) = 0(mod p) and
precision m. Canonical system (J§,...,J!_,), obtained based on algorithm 2.

Output: Item x4, € Z,, with T(E7(24,), z%,) = 0(mod p™) and x4, = zo(mod p).
1. y <+ ALG5(xq, W).
x + X" Y(mod p"V').
A, g—;}(m,y)(mod ™).
A, g—;(x,y)(mod ™).
For s=1to |[(m—1)/W] do
z <+ X7 (y)(mod pttHW),
V < T(z,y)(mod pts+tOW).
Fori=0to W —1do

© ® N e ook W

8, « —dp~CWHDV (mod p).
5z + X71(6,) (mod p™ ).

—_ =
= O

Yy erSWJri(Sy(mod p(8+1)W).
12. V V4 pWHI (A6, + Ayd,) (mod pTHW).

13. Return y.

[

Satoh, Skjernaa si Taguchi proves that for W = n#/0+#)  variation
for some elliptic curve of algorithm 6 have a compute complexity of order
O(n#*mt+1/0+m) " In effective implementations is deemed to determine only
those W which are multiples of structure’s intern dimensions of utilised
Processors.

In fourth chapter were studied mathematical deficiencies in computing
parameters over elliptic curves, more specific, subspaces inconclusive in terms
of cryptography, for highlighting those ideal subspaces in cryptographic system,
and examples of practical implementations, results being published in [23], thus,
in order to get pieces of information about torsion points m we have to look
at rational functions g,, and h,,, which has as solutions those specific points.
Still, we don’t have information about their roots and we end with at least two
results for m co-primes (with p). This section is intended to clarify this model
by defining rational functions with simple roots (exactly in torsion points m)
and solutions only from O. If such function exist, this needs to be polynomial.
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By E’s isomorphism with zero-degree of Picard’s subgroup, such polynomial
exists if torsion points m can be gathered and their result is O. Indeed, this is
the case for which m and p are co-prime: for any torsion point P (m which are
not of order 2 are called O). If E[m] has a point of order 2, then m must be
prime, E[2] C E[m| and p # 2. In this case, there are three points of order of 2,
with sum O, because there exists a rational function with divisor (E[2]) —4(O),
more specific right 2Y + a1 X + as.

In fifth chapter are made contributions in domain of particular subspaces
defined over nonsupersingular elliptic curves with applications in parameters
computing, used for information flow encryption, thus for all cryptosystem based
on elliptical curves, defined the endomorphisms for general systems, according
to mathematical models defined by Menezes, Okamoto and Vanstone can be
customized but only if Hensel’s theorem is assumed, to obtain improvements to
keys used in high secured systems. Thus, transmitted message will be converted
in one or more points (it depends on the length of the message) on used elliptical
curve. In real implementations I used a system based on algorithms 2 and 3,
that requires in the computations algorithm 4, proprietary algorithms developed
through optimizing Satoh’s algorithms, in case of set of elliptical curves took
in considerations are nonsupersingular, thereby leading to a more complex
cryptographic analysis about ECDLP. In order to determine how to attack
the system by cryptographic differential analysis, we will be gradually define
the terms involved and the solution for reducing the problem to one that has
a lower computational complexity, by reducing the mathematical model used
on particular cases. A calculation method used for generated elliptical curves it
was proposed by Koblitz in [18] and starting with this solution I have developed
my very own method for nonsupersingular systems, which uses implementations
designed in third chapter, to get the last desideratum: an encrypted message.
In that direction are considered parameters which defines the elliptic curve.
(F,0,ag, Be, [, p,£), nis a parameter which depend of implemented system
and pu = py, ..., by, unencrypted message. Necessary steps in this patters, for

every fij, j = 1,...,n there are:
1. It is considered j; an integer with property 0 < p < % —1

2. Let x; =nu; + 7 where i =0,1,2...,(n—1)

é—1
3. It’s obtained ¢; = x? + apx; + fg by recursive operations ¢; 2 = 1(mod ¢)

4. ALG 6(T, ¢)
5. Is calculated y; = \/c;

6. M(xi,y;) = (2, y§¢+1)/ 4) is point on the elliptical curve that corresponds
with message ;.
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This is the method used to obtain an encryption for cryptographic systems
based on parameters defined over nonsupersingular elliptical curves, by using
mathematical models and implementations developed along the thesis.

The whole works has theoretical constructions and points it’s applicability
by pointing out the solutions and by offering a practical way to obtain a
nonsupersingular elliptic curves implementation of an encryption system, by
personal algorithmic solutions given for particular cases which have better
resistance to differential cryptographic analysis.




Bibliography

1]

2l

3]

4]

[5]

(6]

7l

18]

19]

L.M. Adleman, J. DeMarrais, and M.-D. Huang. A subexponential
algorithm for discrete logarithms over the rational subgroup of the
jacobians of large genus hyperelliptic curves over finite fields. In
LeonardM. Adleman and Ming-Deh Huang, editors, Algorithmic Number
Theory, volume 877 of Lecture Notes in Computer Science, pages 28—40.
Springer Berlin Heidelberg, 1994.

G.B. Agnew, R.C. Mullin, and S.A. Vastone. An inplementation of
ellipic curve cryptosystems over foiss. IEEE Journal on Selected areas
in Communications, 5(11):804-813, June 1993. 1

R. Alsaedi, N. Constantinescu, and V. Radulescu. Nonlinearities in elliptic
curve authentication. Entropy, 16(9):5144—5158, September 2014. 2

A.O.L. Atkin. The number of points on an elliptic curve modulo a prime,
1992. Series of emails to the NMBRTHRY mailing list.

R. Avanzi, W.D. Benits, S.D. Galbraith, and J. Mckee. On the distribution
of the coefficients of normal forms for frobenius expansions. Designs codes
and cryptography, 61(1):71—89, October 2011.

L.F. Blake, G. Seroussi, and N.P. Smart. Elliptic Curves in Cryptography.
Cambridge University Press, 1999.

J. Buchmann and H. Baier. Efficient construction of cryptographically
strong elliptic curves. In Bimal Roy and Eiji Okamoto, editors, Progress
in Cryptology —INDOCRYPT 2000, volume 1977 of Lecture Notes in
Computer Science, pages 191-202. Springer Berlin Heidelberg, 2000.

D.G. Cantor. Computing in the jacobian of an hyperelliptic curve. Math.
Comp., 48(177):95-101, 1987.

R. Carls. A generalized arithmetic geometric mean (GAGM) sequence.
PhD thesis, Rijksuniversiteit Groningen, 2004.



14

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

M. Ciet. Aspects of Fast and Secure Arithmetics for Elliptic Curve
Cryptography. PhD thesis, Universite Catholique de Louvain, 2003.

C. Clavier and M. Joye. Universal exponentiation algorithm a first step
towards provable spa-resistance. In CetinK. Koc, David Naccache, and
Christof Paar, editors, Cryptographic Hardware and Embedded Systems
— CHES 2001, volume 2162 of Lecture Notes in Computer Science, pages
300-308. Springer Berlin Heidelberg, 2001.

H. Cohen. A Course in Computational Algebraic Number Theory.
Springer-Verlag New York, Inc., 1993.

H. Cohen and G. Frey. Handbook of Elliptic and Hyperelliptic Curve
Cryptography. Discrete Mathematics And Its Applications Series Editor
Kenneth H.Rosen, Chapman & Hall/CRC, 2006.

H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation
using mixed coordinates. In Kazuo Ohta and Dingyi Pei, editors, Advances
in Cryptology — ASIACRYPT’98, volume 1514 of Lecture Notes in
Computer Science, pages 51-65. Springer Berlin Heidelberg, 1998.

N. Constantinescu. Criptografie. Editura Academiei Roméane, Bucuresti,
2009.

J.S. Coron, D. Lefranc, and G. Poupard. A new baby-step giant-step
algorithm and some applications to cryptanalysis. In JosyulaR. Rao and
Berk Sunar, editors, Cryptographic Hardware and Embedded Systems -
CHES 2005, volume 3659 of Lecture Notes in Computer Science, pages
47-60. Springer Berlin Heidelberg, 2005.

J.-M Couveignes. Computing l-isogenies with the p-torsion. In ANTS-
IT: Algorithmic Number Theory, Lecture, volume 1122, pages 59-65.
Springer-Verlag, 1996.

R.E. Crandall. Method and apparatus for public key exchange in a
cryptographic system, October 1992. US Patent 5,159,632.

O.A. Ticleanu. Differential operators for boundary solutions on elliptic
curves spaces with cryptographic applications. Electronic Journal of
Differential Equations, ISI Indexed, IF = 0.524, accepted. 2, 4, 5, 8

O.A. Ticleanu. Mathematical models in cryptography. Journal of
Knowledge Communication and Computing Technologies, 4(1):1-9, 2013.
1,2




BIBLIOGRAPHY 15

[21]

22|

23]

[24]

[25]

[26]

27]

28]

[29]

[30]

O.A. Ticleanu. Nonlinear analysis on elliptic curves subspaces with
cryptographic applications.  Annals of the University of Craiova,
Mathematics and Computer Science Series, 41(2):292-299, 2014. 2, 3

O.A. Ticleanu. Endomorphisms on elliptic curves for optimal subspaces
and applications to differential equations and nonlinear cryptography. E.
Journal of Differential Equations, ISI Indexed, IF = 0.524, 2015(214):1-9,
2015. 3

O.A. Ticleanu and N. Constantinescu. Studying models issues on e-
commerce cashing. In International Conference on Applied Mathematics
and Computational Methods in Engineering II (AMCME ’14), 10S Press
- IST indexed, pages 116-128, 2014. 10

O.A. Ticleanu, N. Constantinescu, and D. Ebénca. Intelligent data
retrieval with hierarchically structured information. In Intelligent
Interactive Multimedia Systems and Services - Proceedings of the 6th
International Conference on Intelligent Interactive Multimedia Systems
and Services, IIMSS 2013, Sesimbra, Portugal, 26-28 June 2013, ISI
indexed, pages 345-351, 2013. 3

M. Deuring. Die typen der multiplikatorenringe elliptischer
funktionenkorper. Abhandlungen aus dem Mathematischen Seminar der
Universitat Hamburg, 14(1):197-272, 1941.

.M. Duursma, P. Gaudry, and F. Morain. Speeding up the discrete
log computation on curves with automorphisms. In Kwok-Yan Lam,
Eiji Okamoto, and Chaoping Xing, editors, Advances in Cryptology -
ASTACRYPT’99, volume 1716 of Lecture Notes in Computer Science,
pages 103-121. Springer Berlin Heidelberg, 1999.

N. Elkies. Elliptic and modular curves over finite fields and related
computational issues. In Computational Perspectives on Number Theory
(Chicago, 1L, 1995) AMS/IP Stud. Adv. Math., Amer. Math. Soc.,
Providence, RI, 7(2):21-76, 1998.

A. Enge. Computing discrete logarithms in high-genus hyperelliptic
jacobians in provably subexponential time. Mathematics of Computation,
71(238):729-742, November 2001.

A. Enge and P. Gaudry. A general framework for subexponential discrete
logarithm algorithms. Acta Arithmetica, 102:83-103, 2002.

A. Enge and A. Stein. Smooth ideals in hyperelliptic function fields.
Mathematics of Computation, 71(239):1219-1230, October 2001.




16

BIBLIOGRAPHY

[31]

32|

33]

[34]

135]

[36]

137]

38]

[39]

[40]

[41]

42|

R. Flassenberg and S. Paulus. Sieving in function fields. Experimental
Mathematics, 8(4):339-349, 1999.

M. Fouquet, P. Gaudry, and R. Harley. On satoh’s algorithm and its
implementation. Journal Ramanujan Mathematical Society, 15(2):281—
318, 2000.

S.D. Galbraith, XB. Lin, and M. Scott. Endomorphisms for faster elliptic
curve cryptography on a large class of curves. Journal of cryptology,
24(3):446—469, July 2011.

R. Gallant, R. Lambert, and S. Vanstone. Improving the parallelized
pollard lambda search on binary anomalous curves. Mathematics of
Computation, 69:1699-1705, 1998.

S. Gao, J. von Zur Gathen, D. Panario, and V. Shoup. Algorithms
for exponentiation in finite fields. Journal of Symbolic Computation,
29(6):879-889, 2000.

J. Guajardo and C. Paar. Itoh-tsujii inversion in standard basis and its
application in cryptography and codes. desing. Codes and Cryptography,
2(25):207-216, February 2002.

R. Harley. Asymptotically optimal p-adic point-counting, December 2002.
Email to normal font NMBRTHRY mailing list.

R. Harley. Method for solving frobenius equations for elliptic-curve
cryptography, 2004. US Patent App. 10/733,320.

R. Harley and J.F. Mestre. Method for generating secure elliptic curves
using an arithmetic-geometric mean iteration, April 2003. US Patent App.
10/172,776.

J.-P. Serre J. Lubin and J. Tate. Elliptic curves and formal groups.
Lecture notes prepared in connection with the seminars held at the
Summer Institute on Algebraic Geometry, Woods Hole, 1964. American
Mathematical Society. 3

M. Jacobson and A. van der Poorten. Computational aspects of nucomp.
In Claus Fieker and DavidR. Kohel, editors, Algorithmic Number Theory,
volume 2369 of Lecture Notes in Computer Science, pages 120-133.
Springer Berlin Heidelberg, 2002.

A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on
automata. Soviet Physics Doklady, 7(7):595-596, 1963.




BIBLIOGRAPHY 17

[43]

[44]

[45]

|46]

147]

48]

[49]

[50]

[51]

[52]

[53]

K. S. Kedlaya. Counting points on hyperelliptic curves using monsky-
washnitzer cohomology. J. Ramunujan Mathematical Society, pages 323
338, 2001.

H.Y. Kim, J.Y. Park, J.H. Cheon, J.H. Park, J.H. Kim., and S.G. Hahn.
Fast elliptic curve point counting using gaussian normal basis. In Claus
Fieker and DavidR. Kohel, editors, Algorithmic Number Theory, volume

3076 of Lecture Notes in Computer Science, pages 292-307. Springer
Berlin Heidelberg, 2004. 5, 7

N. Koblitz. p-Adic Numbers, p-Adic Analysis, and Zeta-Functions.
Springer-Verlag, GTM 58, 1984.

N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48(177):203-209, January 1987. 1

N. Koblitz. Constructing elliptic curve cryptosystems in characteristic
2. In AlfredJ. Menezes and ScottA. Vanstone, editors, Advances in
Cryptology-CRYPTO0’ 90, volume 537 of Lecture Notes in Computer
Science, pages 156-167. Springer Berlin Heidelberg, 1991.

N. Koblitz. A Course in Number theory and Cryptography. New York.
Springer, 1994. 11

D.R. Kohel. The agm — zo(n) heegner point lifting algorithm and elliptic
curve point counting. In Chi-Sung Laih, editor, Advances in Cryptology
- ASTACRYPT 2003, volume 2894 of Lecture Notes in Computer Science,
pages 124-136. Springer Berlin Heidelberg, 2003.

T. Lange. Formulae for arithmetic on genus 2 hyperelliptic curves.

Applicable Algebra in Engineering, Communication and Computing,
15(5):295-328, February 2005.

R. Lercier. Computing isogenies in Fyn. In Henri Cohen, editor,
Algorithmic Number Theory, volume 1122 of Lecture Notes in Computer
Science, pages 197-212. Springer Berlin Heidelberg, 1996.

R. Lercier. Algorithmique des courbes elliptiques dans les corps finis. PhD
thesis, Ecole Polytechnique, 1997.

R. Lercier and D. Lubicz. Counting points on elliptic curves over finite
fields of small characteristic in quasi quadratic time. In Advances in
Cryptology—EUROCRYPT 2003, Lecture Notes in Computer Science,
volume 2656, pages 360-373. Springer-Verlag, 2003.




18

BIBLIOGRAPHY

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

62]

63]

[64]

[65]

C. Lim and P. Lee. A key recovery attack on discrete log-based schemes
using a prime order subgroup. In Jr. Kaliski, BurtonS., editor, Advances in
Cryptology — CRYPTO 97, volume 1294 of Lecture Notes in Computer
Science, pages 249-263. Springer Berlin Heidelberg, 1997.

D. Lorenzini. An Invitation to Arithmetic Geometry (Graduate Studies
in Mathematics, Vol.9). American Mathematical Society, 1996.

G. McGuire and E.S. Yilmaz. Further results on the number of rational
points of hyperelliptic supersingular curves in characteristic 2. Designs
codes and cryptography, 77(2-3):653—662, 2015.

A. Menezes, S. Vanstone, and T. Okamoto. Reducing elliptic curve
logarithms to logarithms in a finite field. In Proceedings of the Twenty-
third Annual ACM Symposium on Theory of Computing, STOC 91,
pages 80-89. ACM, 1991.

A.J. Menezes, Y.-H. Wu, and R. Zuccherato. An elementary introduction
to hyperelliptic curves. In N.Koblitz, editor, Algebraic Aspects of
Cryptography, pages 155-178. Springer-Verlag, 1996.

W. Messing. The crystals associated to Barsotti-Tate groups: with
applications to abelian schemes. Springer-Verlag, 1972. Lecture Notes
in Mathematics (Book 264).

J.F. Mestre. Lettre adressée 4 gaudry et harley, December 2000. Available
at http://webusers.imj-prg.fr/ jean-francois.mestre/.

V. S. Miller. Use of elliptic curves in cryptography. In HughC. Williams,
editor, Advances in Cryptology — CRYPTO ’85 Proceedings, volume 218
of Lecture Notes in Computer Science, pages 417-426. Springer Berlin,
1986. 1

R.T. Moenck. Fast computation of geds. In Proceedings of the Fifth
Annual ACM Symposium on Theory of Computing, STOC ’73, pages
142-151. ACM, 1973.

P.L. Montgomery. Modular multiplication without trial division.
Mathematics of Computation, 170(44):519-521, 1985.

V. Muller. Fast multiplication on elliptic curves over small fields of
characteristic two. Journal of Cryptology, 11(4):219-234, 1998.

V. Muller, A. Stein, and C. Thiel. Computing discrete logarithms in
real quadratic congruence function fields of large genus. Mathematics of
Computation, 68(226):807-822, April 1999.




BIBLIOGRAPHY 19

[66]

167]

68

[69]

[70]

71

72|

73]

[74]

[75]

[76]

K. Nagao. Improving group law algorithms for jacobians of hyperelliptic
curves. In Wieb Bosma, editor, Algorithmic Number Theory, volume 1838
of Lecture Notes in Computer Science, pages 439-447. Springer Berlin
Heidelberg, 2000.

IEEE P1363. Standard specifications for public-key cryptography,
September 1998. Draft version 7.

Certicom White Paper. The elliptic curve cryptosystem for smart card,
May 1998.

S. Paulus and A. Stein. Comparing real and imaginary arithmetics for
divisor class groups of hyperelliptic curves. In JoeP. Buhler, editor,
Algorithmic Number Theory, volume 1423 of Lecture Notes in Computer
Science, pages 576-591. Springer Berlin Heidelberg, 1998.

J. Pelzl, T. Wollinger, J. Guajardo, and C. Paar. Hyperelliptic curve
cryptosystems: Closing the performance gap to elliptic curves. In ColinD.
Walter, CetinK. Kog, and Christof Paar, editors, Cryptographic Hardware
and Embedded Systems - CHES 2003, volume 2779 of Lecture Notes in
Computer Science, pages 351-365. Springer Berlin Heidelberg, 2003.

S.C. Pohlig and M.E. Hellman. An improved algorithm for computing
logarithms over gf(p) and its cryptographic significance. Information
Theory, IEEE Transactions on, 24(1):106-110, January 1978.

F. Morain R. Lercier. Counting points in elliptic curves over f,» using
couveignes algorithm. Technical report, Ecole polytechnique - LIX,
September 1995. Research Report LIX/RR/95/09.

R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120-126,
February 1978.

H.G. Ruck. On the discrete logarithm in the divisor class group of curves.
Mathematics of Computation, 68(226):805-806, April 1999.

T. Satoh. The canonical lift of an ordinary elliptic curve over a finite field
and its point counting. Journal of the Ramanujan Mathematical Society,
15(4):247-270, January 2000.

T. Satoh. On p-adic point counting algorithms for elliptic curves over finite
fields. In Claus Fieker and DavidR. Kohel, editors, Algorithmic Number
Theory, volume 2369 of Lecture Notes in Computer Science, pages 43-66.
Springer Berlin Heidelberg, 2002. 8




20 BIBLIOGRAPHY

[77] C. P. Schnorr. Eficient signature generation by smart cards. Journal of
Cryptology, 4(3):161-174, January 1991.

[78] C.P Schnorr. Efficient identification and signatures for smart cards. In
Proceedings of the 9th Annual International Cryptology Conference on
Advances in Cryptology, CRYPTO ’89, pages 239-252. Springer-Verlag,
1990.

[79] A. Schonhage and V. Strassen. Schnelle multiplikation grosser zahlen.
Computing (Arch. Elektron. Rechnen), 7(3-4):281-292, 1971.

[80] R. Schoof. Elliptic curves over finite fields and the computation of square
roots mod p. Math. Comp., 44:483-494, 1985.

[81] J.P. Serre. Local Fields. Springer-Verlag, GTM 67, 1979. 1

[82] D. Shanks. On gauss and composition i and ii. In R. Mollin, editor,
Number Theory and its Applications, volume 265, pages 163-204. Kluwer
Academic Publishers, 1989.

[83] J.H. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag, GTM
106, 1986.

[84] B. Skjernaa. Satoh’s algorithm in characteristic 2. Mathematics of
Computation, 72(241):477-487, March 2002.

[85] N.P. Smart. The discrete logarithm problem on elliptic curves of trace
one. Journal of Cryptology, 12(3):193-196, 1999.

[86] N.P. Smart. Elliptic curves over small fields of odd characteristic. Journal
of Cryptography, 12(2):141-151, 1999. 2

[87] J.A. Solinas. An improved algorithm for arithmetic on a family of elliptic
curves. Springer-Verlag, 1997.

[88] A. Stein. Sharp upper bounds for arithmetics in hyperelliptic function
fields. Journal of the Ramanujan Mathematical Society, 16(2):1-86,
January 2001. 1

[89] G. Stephanides and N. Constantinescu.  he gn-authenticated key
agreement.  Applied mathematics and computation, 170(1):531-544,
November 2005.

[90] H. Stichtenoth. Algebraic Function Fields and Codes. Springer-Verlag,
1993.




BIBLIOGRAPHY 21

[91]

192]

193]

[94]

195]

196]

197]

198

199]

[100]

[101]

[102]

D.R. Stinson. Cryptography Theory and Practice - Second Edition. CRC
Press, 2002.

B. Skjernaa T. Satoh and Y. Taguchi. Fast computation of canonical lifts
of elliptic curves and its application to point counting. Finite Fields and
Their Applications, 9(1):89-101, 2003.

E. Teske. Speeding up pollard’s rho method for computing discrete
logarithms. In JoeP. Buhler, editor, Algorithmic Number Theory, volume
1423 of Lecture Notes in Computer Science, pages 541-554. Springer
Berlin Heidelberg, 1998.

J.T. van Lint. Introduction to Coding Theory. Springer-Verlag New York,
Inc., 1982.

P.C. van Oorschot and M.J.Wiener. Parallel collision search with
cryptanalytic applications.  Journal of Cryptology, Springer-Verlag,
12(1):1-28, 1999.

S. Vaudenay. The security of dsa and ecdsa - bypassing the standard
elliptic curve certification scheme. In Public Key Cryptography’03, pages
309-323. Springer-Verlag, 2003.

J. Velu. Isogenies entre courbes elliptiques. C.R. Acad. Sc. Paris, Seerie
A, 273:238-241, 1971.

F. Vercauteren. Computing Zeta Functions of Curves over Finite Fields.
PhD thesis, Katholieke Universiteit Leuven, 2003.

F. Vercauteren, B. Preneel, and J. Vandewalle. A memory efficient
version of satoh’s algorithm. In Birgit Pfitzmann, editor, Advances in
Cryptology — EUROCRYPT 2001, volume 2045 of Lecture Notes in
Computer Science, pages 1-13. Springer Berlin Heidelberg, 2001.

J.von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, 1999.

A. Weil. Numbers of solutions of equations in finite fields. Bulletin of the
American Mathematical Society, 55(5):497-508, 1949.

D. Yong and G. Feng. High speed modular divider based on gcd algorithm
over gf(2m). Journal on Communications, 29(10):199-204, October 2008.




