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1 Introduction

A partial differential equation (PDE) is an equation involving an unknown function of two or more

variables and certain of its partial derivatives. PDE’s appear frequently in all domains, such as physics,

mechanics and engineering. In fact, whenever we have an interaction between some independent vari-

ables, we attempt to find functions using these variables and to shape a multitude of processes by

developing equations for these functions. Consequently, due to the rich variety of phenomena which

can be modeled by PDE’s, there is no general theory known concerning the solvability of all of them.

There are many methods to solve PDE’s, each method being applicable to a certain class of equa-

tions. Solving a given PDE depends in large part on the particular structure of the problem at hand. It

is considered that a given problem is well-posed if it has a solution which is unique and stable (i.e. the

solution depends continuously on the data given in the problem). There are many different definitions of

the solution for a PDE. The most natural notion of solution arises when all the derivatives which appear

in the statement of the PDE exist and are continuous, although maybe certain higher derivatives do

not exist. This kind of solutions are called “classical” solutions. On the other hand, there are functions

for which the derivatives may not all exist, but which satisfy the equation in some precisely defined

sense. These functions are known in the literature as “weak” solutions and they are most often used

in the analysis of PDE’s. However, even in situations where an equation has differentiable solutions,

it is often convenient to prove first the existence of weak solutions and only later to show that those

solutions are in fact smooth enough.

In general, the (weak) solutions can be found as critical points of the corresponding variational

functionals defined on an appropriate function space dictated by the data of the problem. The simplest

way to obtain such a critical point, is to look for a global extremum, which in most of the cases is a

global minimum. If the functional has good properties, such as the smoothness or the boundedness,

the existence of the minimum points can be obtained by applying direct methods in the calculus of

variations. Otherwise, for example, the lack of smoothness can be tackled by a reformulation of the

problem as a variational inequality, or if the functional is unbounded, there exist some minimization

techniques that can still be profitably used, by constraining the functional on a set where it is bounded

from below. Typical examples of such techniques are minimization on Spheres, or on the Nehari

manifold.

Some of the fundamental problems in mathematical physics are, probably, the eigenvalue problems

for elliptic PDE’s. The analysis of such equations involves, in general, energy methods which are based

on the critical point theory that has been mentioned previously. For example, the eigenvalue problem

for the p−Laplace operator subject to zero Dirichlet boundary condition, i.e. −∆pu = λ|u|p−2u in Ω

u = 0 on ∂Ω ,
(1)

where Ω is a bounded domain in RN , p ∈ (1,∞) and ∆pu := div(|∇u|p−2∇u) stands for the p−Laplacian,

has been studied extensively along the time and many interesting results have been obtained. If p = 2,
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problem (1) becomes the eigenvalue problem for the Laplacian, that is −∆u = λu in Ω

u = 0 on ∂Ω ,

and it is well-known that all the eigenvalues are positive and form an increasing and unbounded sequence

0 < λ1 < λ2 ≤ λ3 ≤ ... such that λn → +∞ as n → ∞. Moreover, in this particular case, all the

eigenvalues have finite multiplicities and the first one is simple. For p 6= 2 and N ≥ 2, the complete

description of the set of all eigenvalues is an open problem. It is known that the Ljusternik-Schnirelman

theory ensures the existence of an infinite sequence of positive eigenvalues of problem (1), but in general

this theory does not provide all eigenvalues. However, it can be shown, the existence of a principal

eigenvalue, λ1(p), that is the smallest of all possible eigenvalues λ, which can be characterized from a

variational point of view in the following manner

λ1(p) := inf
u∈C∞0 (Ω)\{0}

∫
Ω |∇u|

p dx∫
Ω |u|p dx

.

Moreover, λ1(p) is simple, isolated and the corresponding eigenfunctions are minimizers of λ1(p), that

do not change sign in Ω. Also, it was showed that, if up > 0 is an eigenfunction associated to λ1(p),

then there exists a subsequence of {up}, which converges uniformly in Ω, when p→∞, to a nontrivial

and nonnegative solution, defined in the viscosity sense, of the limiting problem min{|∇u| − Λ∞u,−∆∞u} = 0 in Ω

u = 0 on ∂Ω ,

where ∆∞ is the ∞−Laplace operator, which on sufficiently smooth functions u : Ω → R is given by

∆∞u :=
∑N

i,j=1
∂u
∂xi

∂u
∂xj

∂2u
∂xi∂xj

= 〈D2u∇u,∇u〉 and

Λ∞ :=
1

max
x∈Ω

dist(x, ∂Ω)
.

Motivated by the above results that have been obtained in the case of the p−Laplace operator, the

first part of the thesis (Chapter 2) is devoted to the study of various eigenvalue problems which involve

different types of elliptic partial differential operators or integral operators. For instance, we consider

an anisotropic version of the p−Laplacian, that is the (p, q)−Laplace operator, defined by

∆p,qu := divx

(
|∇xu|p−2∇xu

)
+ divy

(
|∇yu|q−2∇yu

)
,

where we have denoted by ∇xu and ∇yu the derivatives of u with respect to the first L variables and

with respect to the last M variables (L+M = N) and a fractional version of the p−Laplacian, called

fractional (s, p)−Laplacian, given by

(−∆p)
su(x) := 2 lim

ε↘0

∫
|x−y|≥ε

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
dy, x ∈ RN ,

where 1 < p < ∞ and 0 < s < 1. To each of these operators, we associate adequate eigenvalue

problems and we characterize their spectrum using methods based on critical point theory. Besides
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that, in Chapter 2, we study the continuity of the first eigenvalue with respect to a parameter, for a

family of degenerate eigenvalue problems and, in the end, we give a maximum principle for a class of

first order differential operators, using as starting point an eigenvalue problem for elliptic operators

involving variable exponent growth conditions.

The second part of the thesis (Chapter 3) is devoted to the study of some PDE’s that are connected

with the concept of “torsional creep”. This phenomenon is explained as being the permanent plastic

deformation of a material subject to a torsional moment for an extended period of time and at sufficiently

high temperature. The modelling of such a phenomenon is related to inhomogeneous problems of the

type  −∆pu = 1 in Ω

u = 0 on ∂Ω ,
(2)

when p→∞. It is known that problem (2) possesses a unique solution, up, which uniformly converges

to function dist(·, ∂Ω) (that is the distance function to the boundary of Ω), as p → ∞. Note that,

the limit case is of special interest in applications, since it models the perfect plastic torsion. In this

chapter, our aim will be the study of the asymptotic behaviour of some families of solutions for different

equations, which represent extensions of the classical torsional creep problem (2).

2 Main results

The thesis is structured into 3 chapters (Chapters 2-4). Chapters 2 and 3 represent the main body

of the thesis, presenting the main results of our research. Chapter 4 contains some open problems on

the topic of the thesis that represent the starting point for our further research. In the following we

describe in brief the main results from the thesis.

Throughout the thesis, we consider that Ω is a bounded domain from RN with smooth boundary

∂Ω.

Chapter 2 is devoted to the study of various eigenvalue problems, which involve different types

of differential or integral operators. In this chapter, λ denotes a real parameter, which will be called

an eigenvalue of a problem if that problem has a nontrivial solution defined in a variational way. This

chapter contains 4 sections (Sections 2.1-2.4).

Section 2.1 (based on paper [1]) is concerned with the study of an eigenvalue problem involving an

anisotropic (p, q)-Laplacian. More precisely, if L and M are two positive integers, such that L+M = N ,

then for each two real numbers p and q, satisfying 1 < p < q <∞, and each smooth function u : Ω→ R,

we define the anisotropic (p, q)-Laplacian by

∆p,qu := divx

(
|∇xu|p−2∇xu

)
+ divy

(
|∇yu|q−2∇yu

)
,

where we have denoted by ∇xu and ∇yu the derivatives of u with respect to the first L variables and

with respect to the last M variables, respectively, that is,

∇xu =

(
∂u

∂x1
,
∂u

∂x2
, ...,

∂u

∂xL

)
and ∇yu =

(
∂u

∂y1
,
∂u

∂y2
, ...,

∂u

∂yM

)
.
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The goal of Section 2.1, is to study the existence of nontrivial solutions of the following anisotropic

eigenvalue problem  −∆p,qu = λ|u|q−2u, in Ω

u = 0, on ∂Ω .
(3)

The main result of this section is given by the following theorem (see Theorem 2.1 in the thesis).

Theorem 1. Assume that 1 < p < q <∞ and either p ≥ N or

L

p
+
M

q
> 1 and

L

p
− L

q
< 1 .

Then the set of eigenvalues of problem (3) is given exactly by the open interval (µ1(q),∞), where

µ1(q) := inf
u∈W 1,p,q

0 (Ω)\{0}

∫
Ω
|∇yu|q∫
Ω
|u|q

.

In Section 2.2 (based on papers [2] and [6]), we study two eigenvalue problems involving an integral

operator. This section is divided into two subsections: 2.2.1 and 2.2.2. In order to present the main

results from these subsections, we define for each p ∈ (1,∞) and s ∈ (0, 1), the fractional (s, p)-Laplace

operator by

(−∆p)
su(x) := 2 lim

ε↘0

∫
|x−y|≥ε

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
dy, x ∈ RN .

The common eigenvalue problem associated to the fractional (s, p)-Laplace operator is given by (−∆p)
su(x) = λ|u(x)|p−2u(x), x ∈ Ω

u(x) = 0, for x ∈ RN\Ω .
(4)

It is well known that the first eigenvalue of (4), denoted by λ1(s, p), can be characterized from a

variational point of view by

λ1(s, p) := inf
u∈C∞0 (Ω)\{0}

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+sp
dx dy∫

RN

|u|p dx
. (5)

In Subsection 2.2.1, we investigate the problem (−∆p)
su(x) = λf(x, u(x)), for x ∈ Ω

u(x) = 0, for x ∈ RN\Ω ,
(6)

where function f : Ω× R→ R is given by

f(x, t) =

 h(x, t), if t ≥ 0,

|t|p−2t, if t < 0 .
(7)

Function h : Ω× [0,∞)→ R is a Caratheodory function, satisfying the following hypotheses
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(H1) there exists a positive constant C ∈ (0, 1) such that |h(x, t)| ≤ Ctp−1, for any t ≥ 0 and a.e.

x ∈ Ω;

(H2) there exists t0 > 0, such that H(x, t0) =
∫ t0

0 h(x, s) ds > 0 for a.e. x ∈ Ω;

(H3) lim
t→∞

h(x,t)
tp−1 = 0, uniformly in Ω.

The main result of this subsection is the following (see Theorem 2.2 in the thesis).

Theorem 2. Assume that f is given by relation (7) and conditions (H1), (H2) and (H3) are fulfilled.

Then, λ1(s, p) defined in (5), is an isolated eigenvalue of problem (6). Moreover, any λ ∈ (0, λ1(s, p))

is not an eigenvalue of problem (6), but there exists µ1 > λ1(s, p), such that any λ ∈ (µ1,∞) is an

eigenvalue of problem (6).

Next, in Subsection 2.2.2, we study the following perturbed eigenvalue problem (−∆p)
su(x) + (−∆q)

tu(x) = λ|u(x)|r−2u(x), for x ∈ Ω

u(x) = 0, for x ∈ RN\Ω ,
(8)

where s, t, p and q are real numbers satisfying the assumption

0 < t < s < 1, 1 < p < q <∞, s− N

p
= t− N

q
, (9)

and r ∈ {p, q}. Our purpose is to determine all the parameters λ, for which problem (8) possesses

nontrivial weak solutions. With that end in view, define

λ1 :=



λ1(s, p) := inf
u∈C∞0 (Ω)\{0}

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+sp
dx dy∫

RN

|u|p dx
, if r = p

λ1(t, q) := inf
u∈C∞0 (Ω)\{0}

∫
RN

∫
RN

|u(x)− u(y)|q

|x− y|N+tq
dx dy∫

RN

|u|q dx
, if r = q .

The main result of this subsection is given by the following theorem (see Theorem 2.3 in the thesis).

Theorem 3. Assume condition (9) is fulfilled. Then the set of all real parameters λ for which problem

(8) has at least a nontrivial weak solution is the interval (λ1,∞), with λ1 defined above. Moreover, the

weak solution could be chosen to be non-negative.

In Section 2.3 (based on paper [3]), for each α ∈ [0, 2), we consider the eigenvalue problem −div(|x|α∇u) = λu, for x ∈ Ω

u = 0, for x ∈ ∂Ω ,
(10)

where 0 ∈ Ω and the Rayleigh quotient corresponding to this equation∫
Ω
|x|α|∇u|2 dx∫

Ω
u2 dx

.
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The infimum of the above quotient among all smooth functions with zero boundary values, i.e.

λ1(α) := inf
u∈C∞0 (Ω)\{0}

∫
Ω
|x|α|∇u|2 dx∫

Ω
u2 dx

,

is positive and gives the first eigenvalue of problem (10). Thus, we can define the function λ1 : [0, 2)→
(0,∞). The main result of this section is given by the following theorem (see Theorem 2.4 in the thesis).

Theorem 4. The function λ1 : [0, 2)→ (0,∞) is continuous.

The goal of Section 2.4 (based on paper [5]) is to present how a series of results obtained in connection

with an eigenvalue problem involving variable exponents can be used in order to obtain a maximum

principle, which complements the classical maximum principle for elliptic operators. The main result

of this section is given by the following theorem (see Theorem 2.7 in the thesis).

Theorem 5. Let −→a : Ω→ RN be a vectorial function such that −→a ∈ C1(Ω;RN ) ∩ C(Ω;RN ). Assume

that there exists a positive constant a0 > 0 such that

div−→a (x) ≥ a0 > 0, ∀ x ∈ Ω . (11)

If p ∈ C1(Ω) ∩ C(Ω) is a solution of the differential inequality

−→a (x) · ∇p(x) ≤ 0, ∀ x ∈ Ω , (12)

then for each open set U ⊂ Ω the minimum of p in U is achieved on ∂U .

If p ∈ C1(Ω) ∩ C(Ω) is a solution of the differential inequality

−→a (x) · ∇p(x) ≥ 0, ∀ x ∈ Ω , (13)

then for each open set U ⊂ Ω the maximum of p in U is achieved on ∂U .

If p ∈ C1(Ω) ∩ C(Ω) is a solution of the PDE’s

−→a (x) · ∇p(x) = 0, ∀ x ∈ Ω , (14)

then for each open set U ⊂ Ω the maximum and minimum of p in U are achieved on ∂U .

Chapter 3 is divided into 3 sections and devoted to the study of some PDE’s that are related with

the concept of torsional creep.

In Section 3.1 (based on paper [7]), we continue to keep the connection with the previous chapter,

by considering, for each integer n ≥ 1, the family of eigenvalue problems
−∆2nu = µu, for x ∈ Ω

u = 0, for x ∈ ∂Ω

||u||L2(Ω) = 1 ,

(15)

where ∆2nu := div(|∇u|2n−2∇u) is the 2n-Laplace operator and µ is a real number. The main result

of this section is given by the following theorem (see Theorem 3.1 in the thesis).
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Theorem 6. For each integer n ≥ 1 define

µ1(n) := inf
u∈W 1,2n

0 (Ω)\{0}

∫
Ω
|∇u|2n dx(∫
Ω
u2 dx

)n .
Then µ1(n) is a positive real number, which gives the lowest eigenvalue of problem (15). Letting un be

a corresponding positive eigenfunction, the sequence {un} converges uniformly in Ω to ‖δ‖−1
L2(Ω)

δ, where

δ(x) := infy∈∂Ω |x− y|, ∀ x ∈ Ω, denotes the distance function to the boundary of Ω .

The goal of Section 3.2 (based on paper [4]), is to investigate the asymptotic behaviour of the family

of solutions for the following family of equations −div
(
ϕn(|∇u|)
|∇u| ∇u

)
= ϕn(1) in Ω

u = 0 on ∂Ω ,
(16)

where, for each integer n > 1, the mappings ϕn : R→ R are odd, increasing homeomorphisms of class

C1 defined by

ϕn(t) := pn|t|pn−2te|t|
pn
, ∀ t ∈ R , (17)

where pn ∈ (1,∞) are given real numbers, such that limn→∞ pn = +∞. The main result of this section

is the following theorem (see Theorem 3.3 in the thesis).

Theorem 7. Problem (16), with ϕn given by relation (17), has a unique variational solution for each

integer n > 1, provided that pn ∈ [2,∞), which is nonnegative in Ω, say un. Moreover, under the

supplementary assumption that limn→∞ pn = ∞, the sequence {un} converges uniformly in Ω to the

distance function to the boundary of Ω.

In Section 3.3 (based on paper [8]), we consider H : RN → [0,∞) a Finsler norm and α : Ω× R→
(0,∞) a continuous function for which there exist two positive constants λ, Λ, such that

0 < λ ≤ α(x, t) ≤ Λ < +∞, ∀ x ∈ Ω, ∀ t ∈ R. (18)

For each real number p ∈ (N,∞), we consider the following problem −div(α(x, u)H(∇u)p−2H(∇u)) = f, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(19)

where f : Ω→ (0,∞) is a given continuous function and H : RN → RN is defined by

Hi(ξ) :=
∂

∂ξi

(
1

2
H(ξ)2

)
, ∀ ξ ∈ RN , ∀ i ∈ {1, ..., N} .

The main results of this section are given by the following theorems (see Theorem 3.5 and Theorem 3.6

in the thesis).

Theorem 8. Assume that condition (18) is fulfilled. Then for each p ∈ (N,∞) problem (19) has a

weak solution up ∈W 1,p
0 (Ω) such that up(x) ≥ 0 for a.e. x ∈ Ω.
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Theorem 9. Assume that condition (18) is fulfilled. Let {pn}n ⊂ (N,∞) be a sequence of real numbers

satisfying lim
n→∞

pn = ∞. For each n > 1 denote by upn ∈ W 1,pn
0 (Ω) a weak, nonnegative solution

of problem (19) with p = pn. Then the sequence {upn}n converges uniformly in Ω to the distance

function to the boundary of domain Ω given by δH(x) := infy∈∂ΩH
0(x − y), for each x ∈ Ω, where

H◦(x) := supξ 6=0
〈x,ξ〉
H(ξ) , ∀ x, ξ ∈ RN .

Chapter 4 presents some open problems related to the topic of this thesis which will guide our

further research.
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[8] M. Fărcăşeanu, M. Mihăilescu & D. Stancu-Dumitru: On a family of torsional creep problems in Finsler metrics,

submitted.

8


