
UNIVERSITY OF CRAIOVA
FACULTY OF ECONOMICS AND BUSINESS ADMINISTRATION

DOCTORAL SCHOOL OF SOCIAL - HUMAN SCIENCES
FIELD: CYBERNETICS AND STATISTICAL ECONOMICS

DOCTORAL DISSERTATION ABSTRACT

MULTI AGENT SYSTEMS
APPLIED IN E-BUSINESS

Scientific supervisor,
Prof. univ. dr. Vasile GEORGESCU

Ph. D. Candidate,
Adrian Victor SĂNDIŢĂ

Craiova
2015

 2

TABLE OF CONTENTS

1. Contents of the doctoral dissertation --- 3

2. Keywords --- 5
3. Motivation and importance of the research ------------------------------------- 5

4. Summary of the chapters included in the thesis -------------------------------- 6
5. Conclusions of the scientific research --11

6. Selective bibliography ---15

 3

1. CONTENTS OF DOCTORAL DISSERTATION

INTRODUCTION --5

1. MULTI AGENT SYSTEMS -- 10

1.1. Agents and their characteristics--- 10
1.2. Use of agents -- 13

1.2.1 Rules of use --- 15
1.2.2 Communication between agents --- 16

1.3. Classification criteria for agents -- 17
1.4. The action environment of agents -- 19
1.5. Agent behaviour -- 21
1.6. Types of agents -- 24

1.6.1. Agents with a BDI architecture -- 24
1.6.2. Agents with a layered structure -- 26
1.6.3. Intelligent agents --- 28
1.6.4. Agents with a reactive architecture --- 30
1.6.5. Agents with a hybrid architecture --- 32
1.6.6. Coordination in multi-agent systems --- 33

1.7. Conclusions --- 33

2. MaS ORIENTATED PLATFORMS -- 36

2.1. FIPA standards --- 36
2.1.1. FIPA specifications for implementation -- 36
2.1.2. Life cycle of FIPA standards --- 37
2.1.3. Specifications for agent management --- 39

2.2. Cougaar--- 42
2.2.1. Cougaar model --- 43
2.2.2. Cougaar communities --- 44

2.3. JADE -- 45
2.3.1. The characteristics of the JADE model --- 46
2.3.2. JADE implementation -- 48

2.4. Conclusions --- 51

3. COMPUTATIONAL INTELLIGENCE TECHNIQUES ---------------------------------- 53

3.1. Defining the concepts -- 53
3.2. Neural networks -- 55

3.2.1. The advantages of neural networks --- 58
3.2.2. The artificial neuron model -- 60
3.2.3. The architecture of a neural network -- 62
3.2.4. The elements of a neural network --- 65
3.2.5. The perceptron --- 67
3.2.6. The training of perceptrons -- 69

3.3. Support vector machines-- 70
3.4. Conclusions --- 75

4. MULTI-AGENT AUTOMATIC TRADING SYSTEM USING
COMPUTATIONAL INTELLIGENCE TECHNIQUES ------------------------------ 77

4.1. Objectives of the study -- 77
4.2. System construction-- 77

4.2.1. Market Maker --- 77
4.2.2. Arena Gateway --- 79

 4

4.2.3. Multi-agent system design -- 86
4.2.4. Analysis of agent system performance in a volatile environment ---------- 97

4.3. Used data --101
4.4. Supervised training of MaS platform agents --------------------------------------105
4.5. The results obtained in the estimation and prediction phase
using Rapidminer operators--116
4.6. Improving the predictive performance of neural networks
by applying the early stop training strategy --144
4.7. Automatic instantiation of predictive agents by integrating computational
intelligence techniques in a multi-agent system ---151

CONCLUSIONS AND FUTURE DEVELOPMENTS --153

REFERENCES --158

 5

2. KEYWORDS

 Intelligent Agents;
 Bucharest Stock Exchange (BSE);
 Foundation for Intelligent Physical Agents (FIPA)
 Supervised training;
 Computational intelligence;
 Market Maker;
 Support Vector Machines (SVM);
 Agent orientated platforms;
 Neural Networks (NN);
 Multi-agent systems (MaS);
 Automated trading.

3. REASONS, OBJECTIVES AND IMPORTANCE OF RESEARCH

Electronic exchanges play an increasing role within the financial markets, and the
study of the trading mechanisms that are used for financial securities represent the key to
their understanding. Most important stock exchanges use the market makers model (Market
Maker) to assure transactions liquidity and to offer a higher quality and more efficient
market (Kim A.J., 2002). Every issuer has one or more market makers that act to provide
liquidity for the stocks. The responsibility of the market maker is to establish the volumes
and prices at which it is willing to sell or buy, respectively (Stone and Sherstov, 2005). The
market makers represent a major advantage for their acting market. The traders that wish to
buy or sell the stocks of an issuer do not need to wait one another in order to achieve desired
transactions. Moreover, the existence of a Marker Maker discourages traders that try to
manipulate the market by introducing orders to determine price fluctuations towards the
desired direction (Nevmyvaka et al., 2005).

Market makers beneficiate from the position they hold. Although not directly, a
market maker has the advantage because the activity it undertakes allows it to buy at a low
price and sell at a higher one (Feng et al., 2004). The market maker introduces two
quotations: one to sell and one to buy so that other traders may buy or sell at prices fixed by
the market maker. Obviously, the selling price is higher than the buying price and the
difference between the two prices is called the spread. To increase market liquidity, spreads
should be as small as possible. On the other hand, in order to increase the winning chances
of the market maker, the spread value has to be high.

The benefits of the automation of this activity are: a machine properly programmed
can always react more quickly to market changes than a human trader and the decisions that
the machine takes are not affected by the inconstancy that characterizes in many cases the
human decisions.

The main objective of the thesis was necessary study for the design, development and
implementation of a real life multi-agent trading system that can automatize the work done
by a Market Maker within BSE. Automated trading decisions of the developed multi agent
system are based on the trend evolution predictions issued by intelligent agents that use for
analysis methods from the computational intelligence domain: neural networks and support
vector machines (Săndiţă and Durac, 2015).

 6

4. SUMMARY OF THE CHAPTERS INCLUDED IN THE THESIS

The thesis is composed of introduction, four chapters, a separate part dedicated to
conclusions and future developments and ends with the bibliography.

Chapter 1. MULTI AGENT SYSTEMS

The term agent has multiple meanings depending on the context in which it is used.
Wooldridge (1997) defines an intelligent agent as a system that has the following four
properties: autonomy (agents operate without direct intervention from users and can control
their internal actions and states), social skills (agents are able to cooperate with users or
other agents for the completion of tasks), responsiveness (agents perceive the environment
and are able to give a timely response to changes) and pro-activity (agents do not act simply
as a response to the environment they are in, they are able to behave objectively by taking
initiatives).

An agent is a software entity actively seeking ways to complete tasks. Intelligent
agents have the ability to acquire knowledge through problem solving processes. Software
agents focus on interactions and collaborations to achieve their objectives in a changing
context in a usually unexpected manner. The agents are used when the complexity of the
classic large software systems raises design issues that conventional technology fails to
address, or when modularity, execution speed, endurance, coordination and communication
between components are characteristic to the system that will be implemented. In a
distributed dynamic system, agents capable of self-regulation can simplify the architectural
design of the system, which can be extremely complicated in the traditional architectures of
object oriented modeling.

Agent oriented modeling is an unconventional approach to system design, in defining
the components and in system integration inclusively. Autonomy is a distinctive property of
an agent and it implies the ability of an agent to survive in a changing environment. An
agent has the ability to perceive environmental factors and make decisions about how to
react accordingly. Adaptability assumes the existence of the required learning capacity to
adapt decisions based on past experience. Moreover, an agent-oriented design should
develop methods and techniques which enable it to react correctly when unexpected events
occur.

Distributed Artificial Intelligence is a subdomain of artificial intelligence that deals
with solving problems that involve agent interactions in order to solve a common problem
(Green et al. 1997). Agents can inherit potential benefits both from DAI: modularity, speed,
reliability, and from artificial intelligence: operating at the levels of knowledge
maintenance, reusable platform, independence (Nwana , 1996).

In the design of large and/or complex systems, an agent is an abstraction that helps
the design of components that cooperate in resolving various aspects of a problem. Each
agent is designed in the best paradigm to solve its part of a problem. A multi-agent system is
used to solve a complex problem that cannot be solved by a single entity system. Agents
have the ability to efficiently process local data and communicate with other agents when
necessary, if the tasks they face are beyond their knowledge.

Multi-agent systems are used in a wide range of applications such as e-commerce,
e-learning, communication, data mining, simulation, robotics, transportation systems and
grid computing systems. There were also theoretical studies initiated in the reasoning and
specifications of multi-agent systems, in representation and processing of knowledge, and in
cognitive sciences.

 7

The study of multi-agent systems was the basis of our research. The implementation
methodology of agents, their defining properties, the communication method and the
architectures of multi- agent systems have enabled us to reach the completion of the
multi-agent system introduced in the fourth chapter of the thesis.

Chapter 2. MaS orientated platforms

Multi-agent platforms and development tools are important components affecting
dissemination and the use of technologies in various agent oriented fields. In fact, the
successful implementation of multi agent systems largely depends on the availability of the
appropriate technology that enables the implementation of concepts and techniques
underlying multi-agent systems (Ricordel and Demazeau, 2000).

Software platforms and frameworks are key enabling resources to develop
multi-agent systems (Odell et al., 2002). Most offer a means to implement multi-agent
systems on different hardware systems and under different operating systems, typically
providing tools and techniques that support running them and allow smooth implementation
of critical operations, such as communication and coordination. Some of these platforms
and frameworks have a common goal of providing standardized functionality to support
interoperability between different multi-agent systems. Moreover, some also aim to support
various types of hardware, communication networks and agent architectures (JADE,
Cougaar etc.) and others aim to implement only special types of agents, such as, for
example, mobile agents (Lange and Oshima, 1998).

Agent-oriented languages and platforms allow researchers and application developers
to focus more intensely on the tasks that agents must carry and consume fewer resources for
effective implementation of systems of agents.
 Foundation for Intelligent Physical Agents (FIPA) is an international organization
dedicated to promoting standards of design, implementation and use of agents and
agent-based systems (FIPA website). FIPA standards represent a benchmark for developers
of agent-based systems. Respecting FIPA specifications offers several arguments that could
be decisive in the selection of platforms which will be implemented on a certain class of
agents. This architecture ensures compatibility with FIPA standards and system
performance based on strong and fully tested protocols that enable communication between
agents, cooperation and interoperability. Therefore, it is preferred to respect FIPA standards
when the systems that are supposed to be implemented are dynamic, flexible and
reconfigurable. In addition, the research community for agent systems extensively uses
FIPA compliant platforms and so there is a large number of open source implementations of
Java classes, thoroughly tested and well documented that may be useful in application
development. However, the diversity of applications and areas where agents are used
inherently determine the variety of mechanisms through which implementation problems
are approached and resolved, for many of these standards representing a constraint and not
an advantage.

The Cougaar platform described in this chapter implements agents in particular, the
tasks that they can perform and the method of communication between entities operating in
the system. The Cougaar model adds to the traditional system the Binders service, part of a
strong mechanism for containment and encapsulation of all components (Helsinger et al.,
2004). Standardization of such mechanisms would be expensive relative to the scope.

However, for many directions in the line of research on agent systems, compatibility,
portability and easy programming environment are extremely important arguments in favor
of choosing FIPA compliant platforms, such as JADE .

 8

JADE architecture is based on the existence of containers in which agents live and
that provide logistics of the executed tasks that agents must meet. There is a main container
that holds all other containers addresses and characteristics and manages the table that
retains information on all platform agents (JADE website).

The containers contain a table which retains descriptions of locally registered entities
and the communication between the containers is achieved through a specific protocol,
implemented locally. Being used solely for communication between agents from the same
platform without exceeding its borders, the used protocol is not bound by FIPA standards.
In fact, JADE uses this protocol to also launch specific commands to the distributed
platform and to monitor from a distance the condition of the platform containers.

Unlike the protocol used in the platform, for ensuring communication with entities
located outside, Message Transport Protocol meets the FIPA standards. JADE also supports
multiple parallel complex interactions and conversations and provides a set of frameworks
of interaction models for specific tasks. By using these frames (implemented as Java
abstract classes), programmers can relieve from the problems caused by synchronizing the
activity of agents.

Furthermore, to increase scalability or to meet environmental constraints with limited
resources, JADE enables parallel execution of multiple tasks in the same Java thread.

Although our designed multi-agent system has not been implemented on a dedicated
platform, the study of platforms and languages oriented towards agents allowed us to
identify and integrate in our project more elements crucial to the functioning of the system:
inter-agent asynchronous communication, the White and Yellow Pages mechanism, and not
least, the coordination and supervision mechanism of agents.

Chapter 3. Computational intelligence techniques

Computational Intelligence techniques are increasingly being used to solve problems
that cannot be addressed by traditional techniques or when the information is insufficient to
create a model on which we are able to develop a solving algorithm.

This chapter presents two of the techniques specific to the domain, techniques used in
the development of the achieved multi- agent system, namely artificial neural networks and
support vector machines.

The main quality of neural networks is that they can store knowledge that they can
later use in new situations. Acquisition of knowledge in neural networks is made by storing
values in the synaptic weights, values that depend as much on the network architecture that
includes them. The process of assigning values to synaptic weights in a neural network is
called learning process or training process .

As we have seen, there are two fundamental types of learning: supervised learning
and unsupervised learning. In the case of supervised learning, the network is presented with
plenty of examples of learning, represented by input-output vector pairs, characteristic to the
knowledge that is to be acquired. The values of the input vectors are introduced into
calculations, affecting current network weights and causing the output values to compare
themselves to expected results. Depending on the deviation between the observed and
expected values, the weights are adjusted so that the differences become zero or as minimal
as possible.

The whole process is repeated until one considers that the network has been fully
trained. The learning algorithm is based on the fact that if the network is behaving in a
certain way in familiar situations, it will retain its behavior in new and unfamiliar situations.

 9

The data used for learning are called training data, and those used to track the network
behavior in new situations are called test data .

In the case of unsupervised learning, the learning data set consists only of a lot of
input vectors that, as in the case of supervised learning, affect the weights stored in the
network. The difference to supervised learning is that the adjustment of weights in this case
is made such that for close input vectors the same output vector or output vectors with very
similar values are obtained.

A problem that arises frequently in networks with back propagation and dramatically
decreases the effectiveness of learning is local minima. Because the training process stops
when the network reaches a global minimum or a local minimum of the objective function,
a method that determines the exit of the network from local minimum points has to be
implemented, the goal being the achievement of a global minimum. Usually, methods
require change of initial weights, of the training constant or of the number of hidden units.

However, if the solution obtained as a result of network training is acceptable in
terms of rate error, the fact that the network has reached a local minimum or global
minimum is no longer relevant.

Support vector machines (SVM) represent an effective method in designing a
feedforward network with a single hidden layer of linear units. As the name suggests, this
type of neural network design is based on extracting a subset of training data that serves as
support vectors and represent a stable characteristic of the data (Vapnik and Chervonenkis,
1971).

In literature, SVM were imposed as the most used algorithm due to good
performance of generalization, to rigorous theoretical foundations, to their relatively easy
implementation and the ability to provide outstanding performance in pattern recognition
problems and regression (Yom-Tov, 2007).

In the completion of the system introduced in the next chapter the supervised
learning was used, training data and the test data taken from the trading system of the
Bucharest Stock Exchange.

Chapter 4. Multi-agent system for automated trading

using computational intelligence techniques
This chapter describes in detail the architecture, the implementation and operation of

the multi- agent system that was in fact the subject of research. This is the first and currently
the only functional system of automated trading conducted in Romania, dedicated to the
work carried out by Market Makers on the Bucharest Stock Exchange. The system operates
in real time, is connected to the Bucharest Stock Exchange through a dedicated interface, a
Gateway Arena and allows bidirectional communication via a continuous data flow with
trading servers.

The chapter describes the activity of a market maker, the rules by which it is
conducted, the system constraints and the global mechanism through which the connection
and communication is made with servers of the Bucharest Stock Exchange.

The picture below shows the multi-agent system architecture. The system is
connected to the BVB trading system through a Gateway Arena. Bidirectional coupling is
achieved through the agent interface that forwards data received to the Trader agent and to
the supervisor agent. The Trader Agent and the Supervisor Agent are connected to a
MySQL database through a specialized agent, the DB agent. For each issuer for which
actions operate the Market Maker, the Trader Agent is connected to a reactive agent that
receives from this market information, and communicates to the subordinated Pred agents

 10

and decides based on the analysis that it accomplishes if the orders placed on the symbol
should be canceled or not. The chapter contains a detailed overview of the features and
workflow of each agent of the MaS. It also addressed the hierarchical structure of
communication and how agents communicate in the system.

Agent system

The chapter also contains a section dedicated to the system behavior and

performance, recorded under high volatility conditions caused by unpredictable events.
The system includes three agents specialized in trend analysis and prediction: one

who uses technical analysis algorithms, one which uses neural networks and a third using
support vector machines. At the end of the chapter we show the ways of how predictive
agents are trained and details on data used for their training are given. In the previous
sections we have exemplified the use of two of the most powerful computational
intelligence techniques in terms of predictive accuracy: neural networks and support vector
machines. Their implementation was based on two different software tools: MATLAB
language and RapidMiner package.

 11

The chapter ends with a brief overview of the benefits that can be obtained by
combining at a functional level two complementary software architectures, both designed in
Java: the JADE multi- agent platform and the RapidMiner package, which provides a wide
quasi-complete pallet of data-mining methods, including those based on computational
intelligence.

5. CONCLUSIONS OF THE SCIENTIFIC RESEARCH

The results achieved in the implementation of multi- agent system for automated
trading shown in the fourth chapter clearly indicate that agent-based architectures can form
the basis of achieving reliable applications in an extremely dynamic field as the financial
transactions one.

Intelligent agents have the ability to acquire knowledge through problem solving
processes. The study of the social behavior of agents in the cognitive science is an important
part of the intelligent agents.

Software agents focus on interactions and collaborations to achieve their objectives
in a randomly changing context. The features that suggest the use of agents in complex
systems are primarily adaptability, autonomy and collaboration. Autonomy is a distinctive
property of an agent and it implies the agent’s ability to survive in a changing environment.
An agent has the ability to perceive environmental factors and make decisions on how to
react accordingly. Adaptability assumes the existence of the required learning capacity to
adapt decisions based on past experience. Collaboration between agents makes them so they
can be designed to address various aspects of solving a problem, each agent being designed
in the most appropriate paradigm to solve its part of the overall system tasks. The
coordination of the behavior of independent agents represents a central part of multi-agent
system design as well.

Agents have the ability to efficiently process local data and communicate with other
agents when necessary and when the tasks that they are facing are beyond their scope of
knowledge. Multi-agent systems are used in a wide range of applications such as
e-commerce, e-learning, communication, data mining, simulation, robotics, transportation
systems and grid computing .

Produced by the Bucharest Stock Exchange and made available to intermediaries
operating on the capital market in Romania, Gateway Arena is a complex application that
facilitates the transfer of messages between the central system and the applications
dedicated to the exchange of the participants. BSE offers intermediaries a system of servers
connected through secured transactions based on fixed addresses, at access points called
Gateways. Via sockets, a Gateway connects to the user's applications, negotiates connection
to the system and provides a two-way flow of data that is required for trading. It offers
service request/response, event-based services, and connectivity. Using a system of XML
messages transmitted over the network, Gateway Arena receives commands and requests
from dedicated applications belonging to participants, sends them to the central stock
market system and provides answers and market data from the applicant.

The multi- agent system connects to BSE via Arena Gateway allowing bidirectional
transfer of data between specialized agents and trading servers.

In the case of agents, the message body is interpreted as an XML formatted text. The
XML message structure is fully described using an XML schema file provided by the stock
exchange that allows connection with the application. Each outgoing message will be
reviewed and validated using the schema file. If it detects a message that does not comply

 12

with the scheme constraints, Arena Gateway sends an error message to the multi-agent
system and ignores the message.

The implemented multi- agent system architecture has a complex structure consisting
of several types of agents performing specific tasks and interactions. The system enables
easy scaling and adding of new methods of data analysis in real time. Although the agent
authentication within the system is performed using the IP address of the host computer, for
privacy reasons its implementation was done on a local network.

The bi-directional coupling to Gateway Arena is achieved through the agent interface
that forwards data received via the Trader agent and supervisor agent. The Trader Agent and
Agent Supervisor are connected to a MySQL database through a specialized agent, the DB
agent. The Trader agent is connected to a reactive agent, which receives the information
from the trader agents and passes them on to the Pred subordinated agents and then decides
based on their analysis if the orders are to be canceled or not.

The graphical interface that comes with the multi-agent system allows the tracking of
international trends, setup modification and the overall behavior of the system. Usually
placed on the human trader 's workstation, it facilitates the supervision of the entire process.
Critical events are reported through text and auditory messages. Trader agent knows the
exact state of the market through the constant updating of the lists containing the active
orders in the market for issuers selected by the user. Orders list is automatically updated
based on data received from the agent interface, the list being loaded only when the
interface agent interrupts signal communication with the trading server and sends the data.
Based on signals received from Reactive agents, the Trader agent manages operations for
the Market Maker symbols.

Three ways in which the agent acts as Market Maker Trader have been defined: Real,
Fake and Undercover. For each managed symbol either one of the three work modes can be
established. In the Real mode, the automatically issued orders are entered into the BSE, with
all the consequences of the portfolio and the funds arising from this action. To work in real
mode, the trading system participant must request and receive permission from the BSE,
following the signing of a contract and assuming obligations. In real terms, the pairs of
orders are entered into the system through a single command.

In the Undercover mode, their capacity to act as Market Maker can be tested, without
being registered as such on BSE and without being obliged to comply with conditions of
exchange in terms of spread, the time for which orders are active in market and the quantity
from the order. This mode has been used in the second phase of the test. The procedure has
been used extensively in the Fake mode in the first phase of tests because it does not involve
financial risk, and does not require the existence in the shareholder’s account of the stocks
that can be sold. The major difference from the first two modes is the fact that in this case
the orders are not placed in the real market, their introduction is only simulated. The agents
behave as if these were real orders, with the difference that the potential transactions are not
real but simulated. Thus, a purchase transaction is deemed to be carried out if the lowest
sale price has reached or fallen below the price of the purchase order or whether it was a
transaction in the real market at a price less than or equal to the order. Similarly, a sale order
shall be made if there was a transaction in the real market at a greater or equal price with the
one of the order or if the best buy price has reached or surpassed the market price of the
sale.

As stated above, the designed and implemented agent system functions
independently and requires no operator intervention unless there are serious hardware
malfunctions present (communication failures, power failure etc.). However, to minimize

 13

the risks inherent to the use of an automated trading application and to meet legal risk
management procedures, the interface agent has a complex system of displaying
information and communication operations carried out to the human trader. If desired, the
human trader can invalidate decisions taken by the system and can modify its parameters in
real time for the system to act in the desired direction. However, the system has proven to
be very stable so far and the operator's intervention was never needed .

Reactive agents are decision agents who continuously receive information through
the trader agent about transactions on the market and make the decisions of canceling orders
for the symbols managed by the agent system. For each symbol in the list, the agent
allocates a Trader agent and its subordinate structure, made up of prediction agents. At the
moment there are three types of such agents: Pred-THN, which uses a specific technical
analysis predictive model, Pred-NN which uses a prediction model generated using neural
networks and Pred-SVM that relies on vector support machines. Prediction agents are fed
with real-time market data from the reactive agent to whom they are subordinated.
Prediction models upon which agents PRED-NN and PRED-SVM provide predictions are
updated at the end of each week with the last period's trading data and are loaded into the
system when it is not connected to BSE in XML format. A further development of the
system could be achieved by expanding the number of prediction agents to reason based on
other models.

Right now the system operates on five of the most important issuers listed on the
Bucharest Stock Exchange: Fondul Proprietatea SA, SIF Oltenia SA, OMV Petrom SA,
CNTEE Transelectrica S.A. and Banca Transilvania S.A. Adding or removing an issuer is
done through a simple selection from the list, the only constraint being that the system must
be disconnected from trading servers during the time of the selection. Obviously, adding a
new issuer must be preceded by training the prediction agents based on the trading data of
the new issuer. During the tests the simultaneous monitoring of ten issuers was simulated,
without this leading to a decrease in system performance. Moreover, none of the
intermediaries who act as Market Makers can do that for more than five issuers, due to the
restrictive conditions which they must fulfill as regards the financial capacity and the
minimum portfolio which it must have.

For each issuer, the exogenous variables are the trading volume and the values of the
two stock indices representative of the issuer or those in which the issuer's share is the
highest (Săndiţă and Matei, 2015).

As discussed in chapter four, the supervised training of the agents aims to equip them
with the ability to make predictions at the end of a process of supervised training. Training
involves learning from examples, through the collection of data from a training data base,
the ultimate goal being to inductively get a validated prediction model that can be used later
by a specialized agent. The type of the prediction model corresponds to the nonlinear,
dynamic and unstationary nature of stochastic processes, otherwise intrinsic nature of
financial time series. Therefore, we have considered the NARX discrete dynamical models
type to be suitable. Each agent is connected to a set of input variables. When the values of
these variables get refreshed, reaching its port of entry, the agent is activated and processes
the input signal using the prediction model that it has been provided with. Based on this, it
will infer an output value representing the prediction, and then transfer it to the upper level
agent who will use it to make a decision.

The model is delivered offline, using the XML format and syntax . Agents read the
script file that describes the model and have an interpreter and a runtime module for
calculating the prediction based on the model and its use in the decision making process .

 14

Integrating MAS classes and RAPIDMINER operators provide operational phases of data
acquisition and burn them in the SQL database system, identifying and estimating the
NARX model, using, if necessary, supervised learning techniques based on neural networks
or on support vector machines.

Respecting the principle of parsimony, the obtained models should contain only the
necessary modeling. To avoid over-adjustment that occurs when a neural network
excessively specializes, an early stopping technique was used, involving shared technical
data available in three subsets: the training subset, the validation subset and the test subset.
The neural network training subset is used to calculate the gradient and update the network
weights. The subset of validation is used only in training to decide when it is to be stopped
via error monitoring for the validation subset during the training process. The error
associated with the validation subset normally decreases during the initial training phase, in
the same way as the error for the training subset.

When the error for the validation subset rises for a specific number of iterations, the
training process is stopped and the weights that are returned are the ones which correspond
to the minimum validation error. This way the network model with the best performance for
the validation subset is selected. Obviously, in order to achieve untamed results, the test
data subset is selected from a set of input data that has not been used in the training or the
validation process. This strategy was implemented using the MATLAB application that has
specific functions required to process this strategy.

In the second chapter of the thesis I have analyzed two of the most used platforms for
agents: Cougaar and JADE. Cougaar implements a complex model of agents, the tasks that
they can perform and the method of communication between entities that operate within the
system. The Cougaar implements a specific mechanism, strong insulation and encapsulation
for all the components. Major impediments that made me quit using this platform for the
implementation of the agents were the ones presented as the platform’s essential quality,
respectively the over specialisation in error tolerance and generality, elements which would
have unacceptably complicated the system.

Regarding the JADE platform, respecting the FIPA standards and mechanism of
communication between agents determines slow system reactions to events which happen
quickly in the market. In this case, the general nature reduces the performance of the system
in terms of processing speed , which is unacceptable in an automatic trading system.

Although the multi- agent automated trading system was not developed on a
standardized platform, the study of agent-oriented platforms and of their performance
determined the implementation, in the constructed system, of mechanisms similar to those
installed on the platforms. We are talking about how to identify agents through a
mechanism similar to the White Pages and asynchronous messaging communication
between agents. Also, predictive agents use different threads to perform their duties .

Multi-agent systems can benefit from the development and refinement of
computational intelligence techniques to extract knowledge from inductive databases, to
generate predictive models and automatic instantiation of predictive agents able to use these
models to make predictions. As I tried to detail above, the predictive model can be
generated at the end of a supervised learning process using neural networks or support
vector machines. RapidMiner is perfectly suited to perform this activity. Its essential
advantage is that the model obtained by supervised training can be described and saved in
XML code. An agent that has a syntactic analyzer can then interpret the XML code and
execute the model, thus fulfilling a predictive function. Such an approach enables the
automatic instantiation of a whole class of agents within the predictive multi-agent system.

 15

Thus we made predictive agent classes which interpret and execute predictive models based
on neural networks and support vector machines. Both the model XML parser and the
executive (the prediction module) can be designed to perform general tasks. This way, a
predictive agent equipped with an interpreter and an executive oriented towards the neural
networks will be capable to syntactically analyze any neural model and make predictions
based on it.

In this way, the integration of JADE and RapidMiner systems into a shared platform
provides the premise for the implementation of other prediction models in the system. Such
an integrated system is flexible by nature, enabling automatic instantiation for the predictive
agents and their use in the various decision-making processes. Such an agent may change its
built-in predictive function simply by changing the model that processes it, given that the
model represents a function exterior to the agent (such as a plug –in, used in the Cougaar
platform). Obviously, changing the predictive function by adding another model will have
to be accompanied by a potential adjustment of the format for the data structures which are
to be transferred for processing to the new model.

Currently, the automated trading system is installed and working for a sole
intermediary. We hope that early next year we will implement it in two other locations so
we can monitor its behavior when it is competing with itself. Due to the fact that it is
equipped since the initial versions with an action logging mechanism, which allows the
offline behaviour study of each system agent, we can better evaluate the agents’ reactions to
outside stimuli.

6. SELECTIVE BIBLIOGRAPHY

Feng Y., Yu R., Stone P., Two Stock-Trading Agents: Market Making and Technical
Analysis, Agent Mediated Electronic Commerce V: Designing Mechanisms and
Systems, Volume 3048 of Lecture Notes in Artificial Intelligence, Springer
Verlag, 2004;

FIPA website, www.fipa.org, 22 iul. 2015;
Green S., Hurst, L., Nangle, B., Cunningham, D. P., Somers, F., Evans, D. R.,

Software agents: A review (Tech. Rep. No.TCS-CS-1997- 06). Trinity College
Dublin, Broadcom Éireann Research Ltd. 1997;

Helsinger A., Thome M., Wright T., Cougaar: A Scalable, Distributed Multi-Agent
Architecture, Proc. of the IEEE International Conference on Systems, Man and
Cybernetics, The Hague, 2004;

JADE website, http://jade.tilab.com, 22 iul. 2015;
Kim A.J., Christian R. Shelton C.R., Poggio T., Modeling Stock Order Flows and

Learning Market-Making from Data, AI Memo 2002-009, 2002;
Lange D., Oshima M., Programming and Deploying Java™ Mobile Agents with

Aglets™ . Addison-Wesley, 1998;
Nevmyvaka Y., Sycara K., Seppi D.J., Electronic Market Making: Initial

Investigation, Artificial Intelligence in Economics and Finance, World
Scientific, 2005;

Nwana H. S., The potential Benefits of Software Agent Technology to BT, Internal
Technical Report, Poject NOMADS, Intelligent Systems Research, AA&T, BT
Labs, UK, 1996;

 16

Odell J. J., Parunak H., Bernhard Bauer B., Representing Agent Interaction Protocols
in UML, Volume 1957 of the series Lecture Notes in Computer Science, pp
121-140, 2002;

Ricordel P.M., Demazeau Y., From Analysis to Deployment: a Multi-Agent Platform
Survey, ESAW:pp. 93-105, 2000;

Săndiţă A.V., Durac C., Market Maker şi Sisteme Multi-Agent în cadrul Bursei de
Valori Bucureşti, Finanţe, provocările viitorului, nr. 17, Universitatea din
Craiova, 2015;

Săndiţă A.V., Matei Gh., Tranzacţionare algoritmică la Bursa de Valori Bucureşti,
ANNALS of the University of Petrosani, ECONOMICS, vol. XV, 2015;

Stone P., Sherstov A.A., Three Automated Stock-Trading Agents: A Comparative
Study, Agent-Mediated Electronic Commerce VI, Theories for and Engineering
of Distributed Mechanisms and Systems, Volume 3435 of the series Lecture
Notes in Computer Science, pp 173-187, 2005;

Vapnik, V., Chervonenkis, A., On the uniform convergence of relative frequencies of
events to their probabilities.Theory of Probability and its Applications,
16(2):264-280, 1971;

Wooldrige M., Agent – based software engineering, IEE Transactions of Software
engineering, February, 144(1), 26 – 37, 1997;

Yom-Tov, E., A distributed sequential solver for large-scale SVMs, L. Bottou, O.
Chapelle, D. DeCosta, and J.Weston, editors, Large-Scale Kernel Machines,
pp.139–154, Cambridge: MIT Press, 2007.

