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Thesis resume

The entire path of development of an differential cryptographic system
reveals the beauty of pure mathematics and illustrates its applicability with
real results in improving some parameters which have an important role in the
final version of an cryptographic analysis system.

In the 1’st chapter we have the first step in the construction necessary for
nonlinear asymmetric system, this being the study of the subspaces over which
the nonsupersingular elliptic curves will be defined. In this regard, we start
from the existing models and highlight the limitations, then we illustrate the
particular subspaces which will be used in the developments from the next
chapters. Let a a rational number which can be written as a = qmr

s
; r - qk,

s - qk and a 6= 0. We assign ordqk(a) = m and obtain the following rule:

ordqk(a+ b) ≥ min{ordqk(a), ordqk(b)},

as an equality, excepting the case ordqk(a) = ordqk(b).
In the same manner for a ∈ Fqk , we assign ordqk(a) = m if a ∈ (qk)mZqk

(qk)m+1Zqk . This rule also applies for the two definitions of ordqk sustain Fqk .
In both cases we assigned ordqk(0) = ∞. We keep in mind that ordqk is an
homeomorphism F×

qk
→ Z.

E(Fqk) has a compact topology and E0(Fqk) is an open subset. Since E(Fqk)

is a subsets union of E0(Fqk), will result that there is only a finite set which
fulfills the requirements.

Let Fqk × Fqk × Fqk the topology result , F 3
qk
\{0, 0, 0} the topology subset

and P2(Fqk) the topology coefficient from F 3
qk
\{0, 0, 0} → P2(Fqk). We have that

P(Fqk) is an association of images for subsets type Z×
qk
×Zqk×Zqk , Zqk×Z×qk×Zqk ,

Zqk × Zqk × Z×
qk
, each one being compact and open then P2(Fqk) is compact.

The subset E(Fqk) is closed because its the null set of an polynomial.
In relation to this topology on P(Fqk), two points which are close will have

the same reduction module qk. So E0(Fqk) is the space intersection E(Fqk) with
an open subset from P2(Fqk).

It can be easily proven that reduction relationE0(Fqk)→ E(Fqk) is surjective
and is defined on the core E1(Fqk).

We assume that En(Fqk) is a subgroup from E(Fqk). If Ω = (x : y : 1) is in
E1(Fqk) then we will have y 6∈ Zqk . Let x = q−mx0 and y = (qk)−m

′
y0 with x0

and y0 from Zqk .
Then

(qk)−2m
′
y20 = (qk)−3mx30 + ap−mx0 + b
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From here the subspaces have been developed over which nonsupersingular
elliptic curves are defined, which have as the base property the fact that
the majority of points with cryptographic interest are proven that they are
contained.

In the 2nd chapter, starting from the limitations of the existing systems,
for particular cases needed in real implementation, we studied the possibility
of extending the studies from the article [154], for the case of two users, we
extended the study for the case of an group of users which use low performance
devices. But my studies did not consist of reducing the complexity by optimizing
the algorithms implementations, but through elaborating a mathematical model
by taking into consideration the partitioning of a space over which are defined a
set of particular elliptic curves, by this reducing the time needed to compute the
parameters. Still maintaining the same Linear Equivalent Complexity of attack,
achieved by way the space was partition over which the particular elliptic curves
are defined.

The results were published in [60], [61], [62], [31].
In this regard, we developed a model of elliptic curves used in the particular

system, described more in depth in the thesis.
Therefore, let E an elliptic curve defined as

Y2 + γ1XY + γ3Y = X3 + γ2X
2 + γ4X + γ6

and A1 = (ω1, η1), A2 = (ω2, η2) two points on an elliptic curve defined in the
described manner.

In this manner we can state that:

−A1 = (γ1,−η1 − γ1ω1 − γ3)

where γ6 is defined as nonlinear combination obtained from the start parameters
used in encryption. From here we obtain

λ =
η2 − η1
ω2 − ω1

s, i

γ =
η1ω2 − η2ω1

ω2 − ω1

where ω1 and ω2 satisfy the condition ω1 6= ω2, which allowed to develop the
next result:

λ =
3ω2

1 + 2α2ω1 + α4 − α1η1
2η1 + α1ω1 + α3

s, i

γ =
−ω3

1 + α4ω1 + 2α6 − α3η1
2η1 + α1ω1 + α3



4

An elliptic curve was defined over an subfraction of Fq, in the following
manner: E(Fqk). The curve can be easily deducted, it will contain m2 points of
order m, where m will divide qk−1, because having E(m)×E(m)→ γm where
γm is a group of roots of order m of the unit, in K, will deduct the relation
div(g) =

∑
D∈E(m)

(B′1 + D) − (D) with B′ ∈ E(K̄), which fulfills the condition

[m]B′ = B. But, as stated in [11], we can have em as being:

em =

{
E(m)× E(m)→ γm
(B1, B2)→ g(X+B1)

g(X)

so the subspace determined by the fraction m will fulfill the expressed property,
as stated in the formula and g will satisfy g2 − [t]g + [q] = [0].

Starting from the definition of the hierarchical communication access model
[29] we will define a generating function of a public key set based on the
conjugated information, where the space over which the elliptic curve is defined
Fqn will have a multiplication factor K which will satisfy the relation |K| ≤
bq/2c. From here, corresponding to the level of the communication initiator (let
him be Ai) from the user hierarchy, we will define a function like

ϕ(level, string)→ public Key

where string represents the initialization parameters of the generator, as
described broadly in the thesis, and level represents the access level to the
communication secure communication channel, from which Ai belongs.

In the sense of obtaining the interwoven encryption key, for a pair of
participants, let them be (Ai, Aj), they will create a session key if they are
on the same level of security from the hierarchy, if the belong to different levels
of security there will be a communication initiated by the owner of a higher
security level, where these principles are broadly described in [154], [69], [71].
To describe them we will defined:

• ΠKAi
- the secret key of Ai

• ΠPAi
- the public kye of Ai

• ηdAi
(ΠKAi

,m) - message encryption m with the secret key of Ai

• ηeAi
(ΠPAi

,m) - message encryption m with the public key of Ai

• enc(sK ,m) - symmetric key for message encryption m together with sK

• infAi
- pseudorandom value generated by Ai for every session

• E(Zp) - the elliptic curve defined over the field Zp
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• M - message space

• hf(·) - hash function SHA− 1

• m1|m2 - concatenation of messages m1,m2 when m1, m2 ∈M

An user of the systems let him be Ai (with respect to the conditions
expressed in the thesis) will have the following public parameters:

(ΠPAi
, E(Zp), P,Q, n)

where P,Q ∈ E(Zp) represents two points on the elliptic curve E(Zp) and the
division p, as stated in the thesis, will have the form qk with respect to the
presented conditions. Also, we will define the functions

• ηdAi
(ΠKAi

,m) and

• ηeAi
(ΠPAi

,m)

• hf(·)

as public.
For the user Ai, the following parameters are secret:

• ΠKAi

• infAi

Starting from the presented parameters, we can expose the protocol which
establishes the session key between participants Ai and Aj.

• Ai

1. We generate a random number infAi
∈ [1, n− 1]

2. We compute A1
i = infAi

(P−1 + Q) = (xAi
1 , y

Ai
1 ). Let x = xAi

1 mod n.
If x = 0 then we execute step 1

3. We compute A2
i = hf(PAi

|A1
i )

4. We compute A3
i = ηdAi

(πKAi
, A2

i )

5. The first step of communication (from Ai to Aj)
Ai sends to Aj (A1

i |A2
i )

• Aj

1. We compute A1
j = hf(PAi

|A1
i )

2. We compute A2
j = ηeAi

(πPAi
, A2

i ). If A1
j 6= A2

j terminates then the
protocol ends with failure
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3. We generate a random number infAj
∈ [1, n− 1]

4. We compute A1
j = infB(P−1 + Q) = (x

Aj

1 , y
Aj

1 ). If xAj

1 = 0 then
returns to step 3 from the steps executed by Aj

5. We compute A2
j = hf(PAj

|A1
j)

6. computes A3
j = ηdAj

(πKAj
, A2

j)

7. KAj
= infAj

A1
i = (x

Aj

2 , y
Aj

2 )

8. x = x
Aj

2 mod n. If x = 0 then returns to step 3 from the steps
executed by Aj

9. The second step of communication (from Aj to Ai)
Aj sends to Ai (A1

j |A3
j)

• Ai

6 We compute
sAi
1 = hf(PAj

, A1
j)

sAi
2 = ηeAj

(πPAi
, A3

j)

7 If sAi
1 6= sAi

2 the execution of the protocol ends in failure.

8 KAi
= infAi

A1
j

In order to ensure double authentication of the users involved in the process
of secure communication, defined as Ai and Aj, we will define a third step to
the described protocol.

Starting from the steps described in the optimized protocol, described in the
thesis, there will be a third step which will ensure session key approval by Ai,
by this it will be assured by the double authentication of the participants to
the confidential communication channel.

In this regard, Ai will compute

hf((infAi
(P−1 +Q))) | enc(KAi

, infAj
(P−1 +Q))

and will send the result to Aj.
At this point, when receiving the message, Aj will test the equality:

hf((inf
Ai

(P−1 +Q)) | enc(KAi
, inf
Aj

(P−1 +Q)))

= hf((inf
Ai

(P−1 +Q)) | enc(KAj
, inf
Aj

(P−1 +Q))).

If the test of the equality will return success then the session key is
confirmed by the participants. In implementing this system, we defined it as
the conformation step. In regard to higher work speed it is used when the
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participants are of different security levels, because in the case of an inequality
at the third step this protocol will be restarted.

From a statistic point of view, the time needed to execute this step alongside
with the complexity is of order Φ(1/4) from the required first two steps.

It was developed a personal version also for the extended algorithm, based
on the mathematical model described above.

O version of the expressed protocol can be obtained by defining:

h′int(h(k))

where h′int : M → N , h′ representing the function which will generate a
parameter η ∈ N, h′int(h(k)) = η, η ∈ N, and η will respect the inequality
η ≤
√

2 ·n, where n represents the number of security levels. Let Lt, 0 ≤ t ≤ m,
the security levels. In this case, the key for every participant At

j will be created
in two steps.

The first step of authentication of users which is fulfilled in the first part
of the protocol and the second step - authenticating the key, is made at the
additional step (third step).

This version starts form the idea of defining them as being different entities,
the first are the participants to the process and the second the session keys
used. Therefore it will be used a parametrization of T.S., let it be defined as
M i

t called "master parametrization where t is the security level and i represents
the participant index which initiates the communication process.

To highlight the functionality of the model it is necessary to prove the
uniqueness of the parameters defined in the grade fraction qk, over the elliptic
curve used, more exactly the existence of the elliptical curve used.

In this sense, we will demonstrate the following theorem describing the
parametrization used.

Theorem 1. Let Γ an nonsigular projection of an elliptic curve over fraction qk, of
type 1. In this case there is an elliptic curve, let E(Fqk) over qk therefore Γ is an
homogeneous space for E(Fqk) and E(Fqk) is unique defined by an isomorphism
over qk.

In the thesis there is the full demonstration of the above theorem which
illustrates the properties of the used space.

In the 3rd chapter, starting from the idea of cryptographic systems used in
session key generation we developed hierarchical models which treat a variety o
cases of linear and nonlinear generators depending on the use case of each one.
For the linear models, the applicability study can be reduced to the solution
analysis of classic mathematical problems to which the Equivalent Linear
Complexity is reduced. Regarding the resistance to cryptographic attacks,
as a computer science model, they are stable. However, if you study the
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computational effort with an mathematical analysis model based on solutions of
atomic compounds constructed on bijections of the base model, reaching feasible
models which are studied in real time.

In this regard, we developed the necessary model for stating and
demonstrating the conjecture below, which facilitates the modeling illustration
of an optimal system of optimal differential encryption.

Conjecture 1. Berlekamp-Massey for the case of compound dependencies.
For an equations system which describe the behavior a registry set with

linear displacement dependencies of length λ, which will have as an output a
sequence system

(1) α0, α1, . . . , αN−1, for the linear case, where α0 6= 0, N ≥ α, λ′-the length
of the generated string

(2) α0, α1, . . . , αM−1, for the compound case, where α0 6= 0,M > N, λ′′-the
length of the generated string
will satisfy the relations:

(3) λ′ ≥ N + 1− λ, λ′′ ≥M + 1− λ

(4) λ′′ > λ′

This is concretized by the following properties on the implementations of
those parametrization

• Adding a parameter does not guarantee increasing the output string size
/ generator period, in other words, the type of comparison “◦” from the
Conjecture 1 is given by the type / grade of dependency between the initial
parameters and the introduced parameter, let him be noted as: DL(λ′, λ′′)

• The ideal case, the one of dependence DL = 0 is transposed in the fact
that the function “◦” from the Conjecture will become the multiplication
operation.

Starting from those, we developed an proprietary model of parametrization
and construction of equations systems which define a set of shift registries with
linear dependencies, named AGNS, which have an grater efficiency factor then
the original model used in LFSR. E functional version will be:

C.L.E.

Complex.Imp.
(AGNS) >

C.L.E.

Complex.Imp.
(LFSR)

where C.L.E. is the equivalent linear complexity and Complex.Imp. represents
computation complexity of the implementation, for a generation system of
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pseudorandom numbers. The results have been illustrated in the published
article [31].

In this case we have:

bk ≤ bk+1 ≤ ak+1 ≤ ak s, i

0 ≤ ak+1 − bk+1 ≤ (ak − bk)/2

From those expressed we can construct an proposition (results published in
[31]) which illustrate that a iteration of type AGM constructs a sequence of
elliptic curves based on a isomorphism of the initial elliptic curve.

Proposition 1. [31] Starting from choosing the two parameters a and b, so that
a, b ∈ 1 + 4Zq with the property a/b ∈ 1 + 8Zq and an elliptic curve Ea,b

defined by the equation y2 = x(x− a2)(x− b2), let a′ and b′, two parameters so
that: a′ = (a + b)/2, b′ =

√
ab and an elliptic curve Ea′,b′ , defined by equation

y2 = x(x − a
′2)(x − b

′2). In this case, the elliptic curves Ea,b and Ea′,b′ are
characterized by the equation:

Φ : Ea,b −→ Ea′,b′ : (x, y) 7−→
(

(x+ ab)2

4x
, y

(x− ab)(x+ ab)

8x2

)
and the greatest part of Φ is 〈(0, 0)〉. The operation Φ on the differential interval
dx
y

will have the following form

Φ∗
(
dx

y

)
= 2

dx

y
.

In the 4th chapter we study the optimizations of the mathematical models
used in group signing systems, therefore, starting from the concept of group
signature presented by Chaum and van Heijst in the year 1991 ([18, 19, 22]),
any member of the group can sign a message in behalf of the group so that
anyone can verify the validity of the signature but no one can determine which
member of the group sent the message ([40], [117], [168], [97], [98]).

From the developments made in the thesis, particular algorithms have
resulted which are represented below.

All the models studied in the thesis and the described algorithms have been
implemented in two research projects (UEFISCDI PCE and UEFISCDI PCCA)
of which I am proud to be a member. Those results have been illustrated by
testing and using the Digital Declaration system created, which is unique in
Romania and the second system officially implemented at European level.
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Algorithm 1 The key generation algorithm for a system derived from Schnorr
1: generating big prime numbers p and two points (P,Q) nonsingular on an

nonsupersingular elliptic curve, described in the first chapter of the thesis
2: g is the group generator
3: the private key is selectedx
4: y = gx (mod p)

5: Φ = (p− 1)(q − 1)

6: the public key is (p, g, y, P )

7: the private key is (p, g, x,Q)

Algorithm 2 The signing algorithm for a system derived from Schnorr
1: (p, g, x, P ) is the private key
2: is selected randomly k so that 0 < k < q

3: r = P.x, gk (mod p)

4: e = H(m||r||P.y)

5: s = (k − xe) (mod q)

6: the signature is (e, s)

Algorithm 3 The signature verification algorithm for a system derived from
Schnorr
1: (p, g, y,Q) is the public key
2: (e, s) is the signature
3: rv = Q.y, gsye

4: ev = H(m||rv||Q.y)

5: if (ev = e) then
6: (e, s) is valid
7: end if
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